High Dynamic Range Transient Simulation of
Microwave Circuits

Sonali Luniy&, Michael B. Steer and Carlos Christoffersén
*Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606.
fDepartment of Electrical Engineering, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.

Abstract— Advances in communication hardware, urges a need conventional SPICE-like time stepping algorithm. The main
for simulation tools, which can deal with large mixed-signal jssue is estimating error which in turn is used to choose time
circuits. For the first time, a transient circuit analysis using state steps in the simulation. The better estimate of error made in

variables, with high dynamic range is presented. The dynamic - . .
range of the analysis is experimentally verified by a two-tone the new procedure leads to the appropriate choice of time step.

time domain simulation on a X-band MMIC. In summary, in the SPICE approach the waveform arrived at
through nonlinear iteration is compared to a linear extrapola-
. INTRODUCTION tion from the last time point. While a good measure of error

Communications RF hardware is evolving to support multiwith digital waveforms it is a particularly bad estimate when
ple channels and multiple simultaneous functions with signasusoidal signals are involved. Straight line extrapolations do
of different format and widely differing carrier frequenciesnot follow the peaks and troughs of sinusoids and as a result
Design approaches and the simulation tools that have beenexcessive number of time points are chosen at the extremes
developed for existing RF and microwave circuits are poorbf a sinusoid. For one the numerical noise resulting from time
equipped to deal with these signals. A particular charastep selection that is too small affects dynamic range. We
teristic of the signals in these circuits is that they cannobmpare the results of two different nonlinear iterations —
be described as a single modulated carrier. A conventiormamuch better estimate of error. As an example we consider
harmonic balance and transient envelope simulators cantiw transient simulation of an X-band MMIC. The key result of
capture their response. Nevertheless complex multifunctionis work is that transient simulation is now a viable simulation
circuits will be developed and fielded as the use of commapproach to use in modeling microwave circuits with complex
hardware, while being more difficult to design, promises tsignals. There is still the problem of long run times but the
be more cost and size effective. Already multi carrier systenssue of limited dynamic range has been solved.
are being implemented in cellular base stations. Carriers jn .
these circuits are close in frequency but even then it is orﬁy Error Control Techniques
approximately correct to represent them as a single carrierThe time step used in time-domain analysis using numerical
albeit with complex modulation. The situation is worse whetiitegration to determine the circuit response at one instance
the channels are widely separated say when supporting €idime given the circuit’s response at a previous instance of
reception of GPS and cellular communications concurrentfyme, depends on the circuit activity. The time step dynamically
It is not even reasonable to talk about peak-to-average ratff¥nges according to the rate of transitions of the voltages and
with such signals. New communications standards such @#rents. This ensures accuracy and convergence for circuits
WCDMA and future 4G and 5G systems have stringemtith large and rapid voltage and current transitions. During
specifications in terms of out of band emissions and in batifhes of low circuit activity the time step is increased to
distortion. Many of these systems also transmit and recei@duce simulation time [3]. Consider the following differential
simultaneously. The net result of this is that many receiveguation, ,
and transmit signals must support dynamic ranges of 120 x = f(x,1) 1)
dB or more. Here dynamic range is defined as the ability
detect a small signal in the presence of a major larger signﬁc
The maximum ratio of these defining the dynamic range. %
predictive simulator must be capable of achieving dynam
ranges considerably in excess of this.

In this paper we report for the first time a transient circu@

ere x is an unknown variablet is time andf(x,t) is a

ven function. If Xy is the state variable at timg, x; is

e state variable at timg = ty + h, whereh is the timestep.
tSifferent integration methods predict different valuesxofhe
olloquial wisdom is that Backward Euler integration tends to
verdamp the solution whereas Trapezoidal tends to under-

ranges which are sufficient to predictively model multif nc@amp the solution. The task of an error correcting algorithm
anges whi uthicient 1o predictively | UGS to maintain a minimum error by finding the optimum time
tional systems. We examine the underlying cause of t

?e . The equivalent integral function of Equation (1) is
dynamic range limiting process in transient circuit simulators. P q 9 g (@)

As well as increasing dynamic range the new simulation
algorithm requires fewer time-steps and is faster than the

ty

X(t) = X(ty) + f(x,t)dt 2

to



wheret, andt; are two time points as defined above. Th&me point solution to the next. All integration methods suffer
difference between the two time steps is very small. Hené®m a failure mechanism calledccumulated errgr which

the integral equation can be discretized as, occurs in periodic circuits and long transient simulations. If the
N N / 3 overestimated/underestimated errors do not cancel each other
X1~ X(4) = X(t) + X (t, — to) ®3) out, the accumulated error tends to increase with each new
andxo =~ X(t,). Which gives, timepoint.

4) B. Predictors

The Backward Euler and Trapezoidal discretization formu-
lae use the derivative at the next point. But at the beginning of
X, = X,_1 + hx . (5) the' analysis this value ?s not known and cannot be rez_atsonably
estimated. Therefore in order to start the calculations an
This indicates that the future value can be computed basgshroximate value must be computed. This is done in various
on the current value. The different integration methods diffgyays, the simplest being the result of the previous step. This is
in the method used to estimate. The generic integration ysed in the implementation. Another possibility for initializing
fOLmU|6:j used by the different integration formulae can bgnalysis at the next time step is to use Forward Euler formula,
reduced to

X1 :x0+hx/.

Therefore the generic expression is

X, = &%, + b,_1 ) X1 = X + hx,. )

wherea is a constant antl,_; depends on the previous value©nce the predicted value is.insert.ed iqto the corrector (say
of x. Backward Euler integration is a first order differentiaP@ckward Euler or Trapezoidal), iteration is performed to
method as the value of the state variable at any instant depef@gect the mismatch. This iteration is usually performed using
only on the value of the state variable at the previous instaMeWton's iteration. Predictors are however not absolutely nec-
Settingx — X, in Equation (6) yields, the coefficients of theeSSary, a better prediction will result in fewer iterations. Since
generic integration formula as, predictors are very simple to use, their application is highly
desirable. They also help in estimating the errors committed
a— % - _Tlan (7) and in controlling the step size
Trapezoidal integration is a second order differential methdg Algorithm
as the value of the state variable at any instant depends offonventional time step control algorithms use a straight line
the value of the state variables at previous two instancesgekirapolation i.e Forward Euler Integration, to calculate the
. L (XX, ) . initial guess of the state variable at the next time step. The
approximates the derivative by setting= === making difference between the extrapolated value and the converged
the coefficients of the generic integration formulae as, . ; b . Verg
value is the estimated local truncation errdeTE). This
_ 2 b — ;QXn Y ®) technique works well with digital circuits, but for inductive
ho Ol T TRt T e and sinusoidal circuits the estimatedE is extremely poor
Due to the difference in the integration formulas, each meth@ing an extremely poor estimate of the timestep [5]. Newton
will produce a different result when used to discretize Baphson iterations converge only if the initial guess is close
given function. The performance of a method is determindd@ the solution. Hence to achieve convergence this technique
by its accuracyand stability. Since the numerical integrationreduces the timestep to a very small value. In RF circuits
solution is only an approximation to the exact solution, a finit¢hich are mostly sinusoidal circuits, this technique does
amount of error, known as local truncation er(ofE) may be not work very well. A new approach to estimate th&E
introduced at each time point. How th&E accumulates over is developed. The initial guess of the state variable at the
a large number of time points is a measure of the stability 8xt time step is calculated using Backward Euler Integration
an integration method. If a method is unstable it will diverggethod. This solution is the initial guess for the Trapezoidal
from the exact solution over a large number of timepoints. THetegration, which gives the final solution at the time step.
accuracy and stability of an integration method depends on thee difference between the final Trapezoidal solution and the
function it is applied to and time step used. Decreasing the s@@@ckward Euler solution is the estimate@E. The Backward
size improves the accuracy. It forces the simulator to solfguler and Trapezoidal Integration are both predictor-corrector
more points which consequently results in longer simulatidgchniques. In this approach the prediction-correction steps are
time. Decreasing the time step also increases the chancediplied twice, giving a solution closer to the actual solution.
stepping into or close to a model discontinuity and failing tdhus the new approach eliminates the unnecessary cut in time
converge. Trapezoidal integration suffers from a failure mechgteps. The value of the next timestep is predicted by:
nism calIedtrapez_cndaI ov_ershodt4]). Tr_apezmdal oscillation max ([7oe], [70r]) * RELTOL + ABSTOL
occurs when the integration step size is too large to follow thet; = ITE
curvature of a given function. The result is a predicted solution
that appears to oscillate around the correct solution from one thew = told * \/tf «*TRTOL % 2.0 (12)
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where,x;. is the voltage/current predicted by Backward Euler
Integration andx;, is the voltage/current calculated at the

current time step using Trapezoidal Integration. The predicted,
value between iterations cannot change more tR&hTOL
percent of the final valueABSTOL complementsRELTOL
at zero crossings, where the relative tolerance goes to zerg,,

1.59

Fig. 1. Simple RC circuit.
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making the solution to be infinitely accurate. The new timestep
is inversely proportional to the currenfTE. In sinusoidal _**'|
circuits, the calculatetl TE using the new time step control is &, |
smaller compared to the conventional extrapolation approagh,
resulting in larger and fewer time steps, without any loss "}
accuracy. As this algorithm makes a better prediction than t@em,
conventional approach, it is able to follow curves with less

time points.
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II. TIME STEP CONTROL IMPLEMENTATION
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The formulation of the system equations begins with the
partitioned network of [2]with the nonlinear elements replaced S5 55 25 35 25 s 2or o 1
by variable voltage or current sources. Time(us) x10°
The system of linear equations representing the error func-

tion using sparse matrices for such a formulation is [1][2]: Fig. 2. C_ompanson c_>f voltage across capacitor between conventional, new
and analytical calculations.

[G+Cd —[TTJ]\ [uftY [1l. SIMULATION AND RESULTS
T P G | A. Simple RC network
—YJo Xn

Consider a simple RC circuit, shown in Figure 1. The circuit
was simulated on an ULTRA-SPARC 1 workstation with a
maximum timestep of O/s. The circuit was simulated for
10us. Figure 2 compares the voltage across the capacitor using
the the two techniques, and are in excellent agreement with the

, analytical solution. As expected, the absolute error (difference
where,G consists of all conductors and frequency dependefityyeen the analytical solution and simulated solution) intro-

MNAM stamps, C consists of capacitors and inductor valuegy,ced in the final solution reduces with the relative tolerance,
and other values that are associated with dynamic elememig:) 1o, as shown in Figure 3. At high relative tolerance the
T is the incidence matrixs¢ vector is due to the independent,pqqyte error introduced by the conventional technique, is ap-
sources in the circuityy, iyz are the voltage and currenty oyimately two times that of the new technique. To maintain

vectors at the common ports of the nonlinear subnetwormijar amount of tolerance the conventional approach shows
u,, is the vector of nodal voltages,, is the vector of state

variablesJ,, J; are the voltage and current Jacobian matrices.
From Equation (12) it can be seen that an equivalent linear
circuit is formed for every nonlinear element. The circuit is
only equivalent to the nonlinear element at & iteration
because its element values (but not its topology) change by
discrete amounts at every iteration [7][6]. This circuit is repeat-
edly solved with updated element values till convergence is, = | B P
achieved and is solved at every time step. The above equatiofi ;
is solved using LU factorization. The size of the resulting e
algebraic system of linear equations is,,(tng)X(n,+n), ‘
wheren,, is equal to the number of non-reference nodes in T .
the circuit plus number of additional required variables and

is the number of state variables [4k + Ca is updated every
time the time step is change®. is constant. The right hand X
side vectorsJ; andJ, change at every Newton iteration and
every time step, changing only the values of the elements in
the equivalent linear circuit by a discrete amount. Fig. 3. Comparison of absolute error as a function of relative tolerance
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[ % RELTOL | Conventional ApproacH New Approach| % Improvement] o

Linear-12GHz
New —-P(12GHz)
New -P(9GHz
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Fig. 5. Comparison between the new technique and commercial harmonic
balance simulator, of the IM3 output power levels for the LMA411 MMIC.

the carrier, will have a IM3 product more than 100dB below
the carrier, which will help to test the maximum possible
dynamic range of the technique. As desired, a gain of 16dB
Fig. 4. Layout of the LMA411 X-band MMIC. was seen at the output of the two tones. The output power
levels of the IM3 products at 9GHz and 12GHz are plotted in
Figure 5. The output power level at 9GHz, has a slope of 1,
bunching of data points at the peak of the sinusoidal signwhereas the output power level at 12GHz, has a slope of 2.
Table | compares the total number of timepoints required Byne new technique performs better than commercial harmonic
the two methods. The straight line extrapolation overshodglance simulators at low input power levels. The commercial
the sinusoid at every timepoint, resulting in a bigddfE, harmonic balance simulator has a numerical noise floor of -
effectively reducing the predicted timestep. Whereas with tA80dB. Below -60dB input power the commercial simulator
new approach, at the peak of sinusoid, the predicted valudhits the numerical noise floor, showing a maximum dynamic
very close to the final value, reducing th&E and increasing range of 125dBc. Whereas, since the new technique follows
the timestep. The overall improvement in the number @&fnusoidal curves better, it can detect very small signals, as

timepoints is approximately 29.0%. the LTE is small enough not to encapsulate tiny signals.
Consequently the new technique has a numerical noise floor
B. LNA MMIC of approximately -170dB. It hits the numerical noise floor

To test the dynamic range of the new technique a two tohelow -80dB input power. The ultimate numerical noise floor
test was done on a Filtronic Solid State (LMA411 MMIC) highs defined by the fourier transforms performed on the time
dynamic range low noise PHEMT amplifier. The LNA operatedomain signal. The dynamic range of the new technique is
from 8.5 to 14GHz. The amplifier is reactively matched at thapproximately 165dBc.
two ports which provides a 18dB nominal gain with a 1-dB

gain compression power output of +17dBm. It can be used V. CONCLUSION
as a pre-driver amplifier for phased array radar as well as
commercial communications applications. The importance of this paper was the development of a

In this paper, the PHEMTSs of the LNA were modeled usingew timestep control technique for a transient analysis using
the Curtice-Cubic model of a MESFET. The transmission linetate variable based device models to achieve high dynamic
were modeled as generalized transmission lines. As this isasge. The new technique has a better estimate of error,
time domain analysis the transmission lines were modeledtadping to achieve a dynamic range of approximately 165dBc.
RLGC elements. A 10GHz sinusoid with 6-V drain DC biaghe new technique achieves similar computation accuracy as
and 0-V gate DC bias was applied to the MMIC. To test thine conventional time stepping technique, but with a smaller
dynamic range, a two tone test, with the first tone at 10GHmmber of timepoints. The transient analysis was developed in
and a input power level of -20dB and a second tone at 11Glzyeneral purpose simulatéREEDA™ (http://freeda.
was performed. The input power level of the second tone wagy ) and is targeted towards circuits operating at RF and
varied from -20dB to -120dB. A second tone 100dB belomicrowave frequencies.
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