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Abstract
An original approach is presented to the time-

dependent thermal modelling of complex 3-dimensional
electronic systems, from metallised power FETs and
MMICs, though MCMs, up to circuit board level. This
method o�ers a powerful alternative to conventional nu-
merical thermal simulation techniques. In contrast to
semi-analytical Fourier approaches involving DFT-FFT,
the method is based on explicit, fully analytical, double
Fourier series expressions for thermal subsystem solu-
tions in complex frequency space. It goes beyond previ-
ous rectangular multilayer solutions by treating complex
geometries, and providing a full description of thermal
material non linearities as well as explicit inclusion of
surface uxes. It provides a fully physical, and near ex-
act, generalised multiport network parameter description
of distributed thermal subsystems. In contrast to existing
circuit level approaches, it requires no reduced model RC-
network approximation for fully coupled, electro-thermal
CAD. Implementation of the thermal model as N-port
elements within a circuit simulation engine, Transim, is
described and illustrative simulation results presented.

I. Introduction

The impact of self-heating and mutual thermal inter-
action on electronic device and integrated circuit perfor-
mance is well known, and the electro-thermal simulation
problem has been studied for at least 30 years [1]{[3].
The thermal modelling of complex 3-dimensional struc-
tures can be achieved by standard numerical techniques.
However, these conventional numerical approaches are
generally too slow to allow explicit coupling with elec-
tronic device and circuit simulators. Thus a number of
faster thermal descriptions have been developed.
The simplest thermal models for the time-independent

case are provided by analytical thermal resistance ap-
proaches of varying levels of complexity, e.g. [4], [5].
However, it has been stated repeatedly [6], [7] that the
thermal resistance approach is fundamentally approxi-
mate and inadequate for detailed description of power
devices. To describe the thermal e�ects of surface met-
allisation, vias and partial substrate thinning, in power
FETs and MMICs, Bonani et al employed a hybrid �nite

element Green's function technique [6].
A few analytical thermal impedance expressions have

also been presented for the thermal time-dependent case,
for instance [8]. Veijola has implemented a simple, ap-
proximate thermal impedance description, based on an-
alytical solution for heat-generating spheres, in circuit
simulation programmeAPLAC [9]. Rizzoli has employed
a Green's function construction of the thermal resistance
matrix in a wide range of circuit level, harmonic balance
and transient simulations, but with thermal capacitances
described approximately based on an enthalpy formula-
tion [10]. Analytical Green's function and Fourier so-
lutions have been used to describe the time-dependent
thermal problem by a number of authors. In particular,
Szekely et al have employed a Fourier series method for
over 20 years, providing solutions for a variety of ICs,
microsystem elements and MCMs [11].
For circuit level electro-thermal simulations, a large

number of thermal model reduction techniques have also
been employed. Work in this area includes that of Sabry
[12], Napieralski [13] and Szekely [14].
The aim of this paper is to describe a new, fully phys-

ical, approach to the time-dependent thermal problem
in complex 3-dimensional systems, suitable for coupled
electro-thermal device and circuit simulation on CAD
timescales, with essentially no model reduction. The im-
plementation of this thermal model, coupled to a fully
physical electrical model (the Leeds Physical Model), has
been presented elsewhere [15]. Here, coupling to a mi-
crowave circuit simulator Transim [16], is described.
The thermal model is based on the thermal impedance

matrix approach. This time-dependent formulation is
a natural development of the thermal resistance matrix
approach for the time-independent case, described by
the authors in [17] and developed fully in [18]. It is
shown that, in contrast to previous thermal resistance
and impedance approaches, this thermal impedance ma-
trix method can be formulated to provide an essentially
exact solution of the heat di�usion equation in complex
3-dimensional systems. It therefore removes the need to
utilise computationally intensive numerical techniques in
order to treat complex structures, e.g. [12], [13], [19].
Previous Green's function or Fourier approaches have
been restricted to simple rectangular homogeneous vol-



umes and multilayers, e.g. [3], [10], [14], [20]. The model
presented here can describe simultaneously all device de-
tail, from surface metallisation, vias and substrate thin-
ning, in power FETs and MMICs, to (actively cooled)
MMIC on substrate arrays e.g. for spatial power com-
bining applications, up to MCMs and circuit board level.
It does this by providing fully analytical solutions of
the heat di�usion equation in thermal subsystems, and
then matching temperature and ux at subsystem inter-
faces. As the subsystem solutions are matrix expressions,
explicit matrix representations can be obtained for the
global thermal impedance matrices of the complex de-
vice structure. A distinguishing feature of the double
Fourier series, thermal subsystem solutions, to be pre-
sented here, is that they are given by explicit analytical
formulae. This is in contrast to the numerical manip-
ulations required in the DFT-FFT approach of Szekely
et al, who employ a collocation, or function sampling
technique, to obtain the expansion coe�cients in their
Fourier formulation [11]. The analytical thermal sub-
system description is formulated in Laplace transform s-
space (complex frequency space) and so is shown to give
rise to both frequency-domain and time-domain expres-
sions, allowing treatment of both the harmonic steady-
state, as well as the transient case. The fact that thermal
subsystem solutions are fully analytical in s-space, also
removes the need for any numerical approach to the iden-
ti�cation of corresponding thermal networks [21]. This
time-dependent thermal solution is formulated to pro-
vide full treatment of material non linearities due to
temperature dependent thermal conductivity (and dif-
fusivity [22]). It also employs a `radiation' boundary
condition that allows treatment of radiative and convec-
tive surface uxes in large area systems without approx-
imation such as that invoked in [11]. (Similar bound-
ary conditions have also been applied, for example, in
�nite di�erence solutions for electro-thermal simulation
[19], and in analytical solutions at the circuit board level
[20].) Importantly, this approach allows essentially exact
description of distributed thermal subsystems via gen-
eralised multiport network parameters in circuit level
CAD, without any need for representation by a reduced,
lumped-element, �nite RC network.

II. Thermal impedance matrix

The thermal impedance matrix approach reduces to
construction of global heat ow functions, for active ele-
ments in semiconductor integrated circuits, in the form

��i =
X
j

RTHij
(s)Pj (1)

where ��i is the Laplace transformed temperature rise of
active element i above its initial temperature, RTHij

(s)
is the thermal impedance matrix in Laplace s-space and
the Pj are the transformed time-dependent uxes due to
power dissipation in active elements, j = 1; :::; i; :::M .
This linear form requires use of the Kirchho� trans-

formation to treat the non linear time-dependent heat
di�usion equation [23]. The importance of performing
the Kirchho� transformation has been illustrated, e.g.
by Webb [24], and for transient simulations involving
�100 K temperature rises [15], there is no obvious oper-
ating point about which to make a simple linearisation of

the temperature dependent thermal conductivity. This
Kirchho� transformation is trivial to impose a postiori
to solution of the linear heat di�usion equation, by ap-
plication of a simple analytical formula to the solution
temperatures [18]. In the thermal impedance matrix ap-
proach presented here, RTHij

(s) is then determined in
explicit analytical form, purely from structural informa-
tion. It is independent of temperature and power dissi-
pation, and hence of device bias. Its order is determined
only by the number of active device elements, indepen-
dent of the level of the complexity of the device struc-
ture, so is already minimalwithout any model reduction.
Thermal updates in the coupled electro-thermal problem
therefore reduce to small matrix multiplications, Eq. (1).
This approach o�ers orders of magnitude speed-up com-
pared to numerical thermal solutions.
Construction of the thermal impedance matrix

RTHij
(s) is now described for a homogeneous MMIC,

with simulation results presented for an N-level multi-
layer, and then for more complex structures such as a
MMIC with surface metallisation, or a MMIC array.

A. Homogeneous MMIC and N-layer

An analytical, double Fourier series, solution to the
time-dependent heat di�usion equation is constructed
for the case of a homogeneous MMIC, 0 < x < L,
0 < y < W , 0 < z < D, with active device elements
i = 1; :::;M described by surface elementary areas, Di.
The method follows very closely the authors' full de-
scription for the time-independent case in [18]. Adia-
batic boundary conditions are assumed on the MMIC
side faces and a generalised `radiation' boundary condi-
tion is imposed on the top and bottom faces, z = 0; D,

�0;D�S
@�

@z
+H0;D (� � �0;D(x; y; t)) + p0;D(x; y; t) = 0:

(2)
Non linear surface uxes can be treated as the limit
of a sequence of such fully linear problems [17]. Here,
imposed ux densities p0;D(x; y; t) are time dependent.
Coe�cients H0;D describe surfaces uxes due to radia-
tion and convection. The �0;D equal zero for imposed
temperature boundary conditions and unity for imposed
ux boundary conditions. The respective ambient tem-
peratures (�0;D 6= 0), or heatsink mount temperatures
(�0;D = 0), are also dependent on time, �0;D(x; y; t).

To solve this problem, the Laplace transform, �(s),
is constructed, and for the case of a uniform initial tem-
perature distribution equal to uniform and time indepen-
dent ambient temperature, separation of variables gives
the general solution for �(s). Explicit analytical expres-
sions can be obtained for the Fourier series expansion co-
e�cients, without the need for numerical manipulation
such as DFT-FFT. Fully analytical Fourier solutions in
Laplace s-space have been described previously [3].
To demonstrate a de�nite time-dependent form of the

thermal impedance matrix, assume, for instance, no ux
from the MMIC top surface, and uniform constant tem-
perature on the bottom surface, corresponding to heat
sink mounting. Assuming a time-varying surface power
density which is piecewise uniform, with values Pi(t) in
active device elementary areas Di, then constructing the
surface temperature rises, ��i, averaged over elementary



areas Di, Eq. (1) is obtained immediately with,

RTHij
(s) =

1

�SLW

X
mn

4 tanh(mnD)

mn(1 + �m0)(1 + �n0)

IimnI
j
mn

Ii00
;

(3)
where m;n = 0; 1; 2; :::,

�m =
m�

L
; �n =

n�

W
; 2mn = �2m + �2n +

s
k
; (4)

and area integrals Iimn have been de�ned by

Iimn =

ZZ
Di

cos
�m�x

L

�
cos

�n�y
W

�
dxdy: (5)

Di�usivity k = �S=�C, �(T ) is temperature dependent
thermal conductivity, T is physical temperature, � is
density and C is speci�c heat. �S is �(TS) where TS
is the Kirchho� transformation temperature. �mn is the
Kronecker delta function.
The thermal impedance matrix of Eq. (3), reduces to

the respective time independent form [17], [18], in the
limit s=k ! 0. Extension to treat other realisations of
the `radiative' boundary condition, Eq. (2), is immedi-
ate [18]. The expression for RTHij

(s), Eq. (3), can be
written in alternative equivalent forms [3], and is read-
ily extended to treat N-level multilayers by means of a
simple transfer matrix approach for the analytically ob-
tained Fourier expansion coe�cients [18].
To illustrate the accuracy and speed of this method,

the analytical solution for an N-level multilayer is used to
plot the complex locus of the thermal transfer impedance
in Fig. 1. The 4-layer, heatsink mounted device consid-
ered, is a structure examined by Szekely et al ([14] Figs.
5 and 6; [21] Fig. 17). Agreement with the calculations
of Szekely seems good. The data for this �gure took less
than 1s to generate on a 500 MHz Pentium processor
and consists of 65 frequency points.
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Fig. 1. Complex locus of the thermal transfer impedance, cal-
culated using an analytical series expression, for a 4-layer,
heatsink mounted structure examined by Szekely et al.

Digele has stated [19] that the Kirchho� transfor-
mation is of no value for multilayer structures. How-
ever, this is incorrect. The Kirchho� transformation is
exact for N-level multilayers with the same functional
form (but di�erent values) for the temperature depen-
dent thermal conductivity in each layer. A single, global

Kirchho� transformation is also a good approximation
for multilayers in which the functional form of �(T ) dif-
fers between layers, so long as an appropriately modi�ed
e�ective value for �S is chosen in each layer for which
the global transformation is not exact [24], [25].
The thermal impedance matrix approach as described

here means that generally, temperature will only be cal-
culated in the vicinity of active elements, as required
for the coupled electro-thermal solution. No redundant
temperature informationwill be generated on the surface
or in the body of the die. However, the solutions of the
heat di�usion equation just described, provide analytical
expressions for both the thermal impedance matrix and
for the corresponding temperature distribution through-
out the body of the MMIC. This means that once power
dissipations, Pi, have been obtained self-consistently, by
employing the thermal impedance matrix in the coupled
electro-thermal implementation, temperature can be ob-
tained essentially exactly, if required, at any point within
the body or on the surface of the MMIC. This is of value
for model validation against thermal measurements.
The analytical, double Fourier series, derivation of the

thermal impedance matrix can be extended to treat 3-
dimensional volume heat sources, rather than just the
planar heat sources that have been treated previously
[11], [17], [18]. Details will be presented elsewhere. The
double Fourier series approach also allows exact treat-
ment of inhomogeneous structures, such as MMIC die
with vias and partial substrate thinning [18].
The matrix given by Eq. (3) represents an exact ana-

lytical solution for time-dependent 3-dimensional heat
ow in a MMIC bearing an arbitrary distribution of
power dissipating elements. These elements could be
transistor �ngers or �nger subsections, grouped in any
fashion, or could represent heat dissipating passive ele-
ments. The thermal impedance matrix, Eq. (3), takes
full account of all �nite length and end e�ects, and sim-
ulates exactly the �nite volume of the MMIC die.
The analytical solution, Eq. (3), represents the ther-

mal impulse response of the MMIC. It is frequency de-
pendent as characteristic of distributed systems and con-
tains an in�nite number of poles and zeros. It corre-
sponds to a multiport thermal network which cannot be
represented exactly by a �nite network of frequency in-
dependent primitives, (such as thermal networks gen-
erated by numerical mesh descriptions, e.g. [12], [13],
[19], which only give an exact thermal description in the
limit of in�nitely �ne mesh discretisation). The mul-
tiport network is already minimal, in that it describes
nodes corresponding only to surface heating elements (or
discretised interface elements). The multiport network
parameter interpretation presented here, makes the ther-
mal impedance matrix approach immediately compatible
with network based electromagnetic and electrical circuit
solvers [26], without the need for any model reduction
beyond that implicit in summation of in�nite series to
just a �nite number of terms.
The thermal impedance matrix, Eq. (3), can either

be used directly in frequency space, for instance in har-
monic balance simulations, or Laplace inverted to de-
scribe thermal time dependence directly in transient sim-
ulations. For the harmonic balance case, the solution for
the thermal impedance matrix is just of the s-dependent
form, Eq. (3), with s ! i!. It takes the form of an ar-
ray of frequency dependent complex phasors containing
phase and amplitude information for the (asymptotic) si-



nusoidal response to harmonic forcing. This matrix then
corresponds to the network parameters of a distributed
multi-port thermal network.
Having obtained linearised temperature in s-space,

�(s), and assuming Pj corresponding to simple step in-
puts of magnitudes Pj, analytical inversion gives the
corresponding time domain thermal impedance matrix,
RTHij

(t), corresponding to step input,

RTHij
(t) = L�1

n
RTHij

(s)
1

s

o

=
1

�SLW

2

D

X
lmn

4

(1 + �m0)(1 + �n0)

IimnI
j
mn

Ii00

�

1 � exp

�
��2

��
l+1=2

D

�2
+
�
m
L

�2
+
�
n
W

�2�
kt

�

�2
��

l+1=2

D

�2
+
�
m
L

�2
+
�
n
W

�2� (6)

with l;m; n = 0; 1; 2; :::. Taking the limit t ! 1

and performing the l summation explicitly, the time-
independent result is recovered [17], [18]. Combining ta-
bles of standard integrals with alternative expressions for
the inverse Laplace transform (using properties of theta
functions), equivalent forms for the time-dependent ther-
mal impedance matrix can be obtained which are far
more rapidly convergent at very small times. Using the
Watson transformation and the Poisson summation for-
mula, series solutions such as Eqns. (3) and (6) can be
partially summed explicitly in closed form, and partially
accelerated to give even more rapidly evaluated expres-
sions. These results will be presented elsewhere.
Eqns. (3) and (6) also give immediately pole-zero or

time constant representations for the thermal impedance
matrices. Writing [27],

RTH(t) =
X
i

Ri (1� exp(�t=�i)) (7)

with i � (l;m; n), it is apparent from Eq. (6) that Ri

and �i are obtained in explicit analytical form. Retain-
ing just those terms corresponding to the dominant time
constants gives a representation similar to that aban-
doned by Napieralski et al [13] because it could not be
obtained in a simple parameterised form.
Although it is distributed, the �nite thermal system is

seen not to be represented by a continuous time constant
spectrum, but by a countably in�nite number of time
constants. However, summing all contributions within
range � to � +��, where � = ln � [27], continuous spec-
tra are obtained, Fig. 2. These spectra are calculated for
a silicon chip considered by Szekely et al [27] and agree-
ment with the calculated results presented in Fig. 23 of
that paper is good. Exact agreement is not to be ex-
pected, as details of the time constant spectrum depend
on the magnitude and placement of intervals ��. The
two curves shown correspond to division of the 8 decade
logarithmic interval, into 40 (solid line) and 80 (dotted
line) equal subdivisions, respectively.

B. Complex structures

Construction of thermal impedance matrices is now
described for more complex systems, such as MMICs
with surface metallisation, or MMIC arrays [15], [18].
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Fig. 2. Time constant spectra obtained from Eqns. (6) and (7)
for a Si chip considered by Szekely et al.

To illustrate the interface matching approach, the
global thermal impedance matrix is constructed for the
case of N pieces of rectangular, but otherwise arbitrary,
metallisation on the surface of an otherwise homoge-
neous heatsink mounted MMIC. Matching ux and (lin-
earised) temperature at the interface between metal and
MMIC die, the following relation is obtained

��a = Rglob

TH
Pa; (8)

where Pa is the vector of MMIC active device power dis-

sipations, Rglob

TH
is the global thermal impedance matrix

for the coupled GaAs and metal system, and ��a is the
vector of MMIC active device temperature rises.
The global impedance matrix is given explicitly by

Rglob

TH
= Raa

TH
+ Rai

TH
R Ria

TH
; (9)

R = diag
�
T (1); :::; T (n); :::; T (N)

�

�

h
I i �Rii

TH
diag

�
T (1); :::; T(n); :::; T(N)

�i
�1

: (10)

Here, Ii is the identity matrix, R
TH

of Eq. (3) for the

MMIC die has been partitioned by active device ele-
mentary areas, a, and interface elementary areas be-

tween MMIC die and metal, i, and the T (n) are thermal
impedance matrices for each piece of metallisation.
Hence, by simple matrix manipulation, the global

thermal impedance matrix for the metallised MMIC can
be obtained as an explicit matrix expression for any given
value of Laplace transform variable, s. Also, using the
simple algorithm for the numerical Laplace inverse, e.g.
[28], the value of the global thermal impedance matrix
can be evaluated at any time step, n�t, in the time do-
main. Direct time domain interface matching (which
avoids repeated matrix inversion) is described in [15]. In
cases where non linear interface matching cannot be ne-
glected, the thermal impedance matrix approach allows
formulation of a non linear system of equations for the
correctly matched temperatures [17].

III. Circuit simulations

This section describes coupled simulations at the cir-
cuit level, based on integration of the thermal impedance



matrix model with the microwave EM/electrical circuit
simulator, Transim. Some insight into the Transim pro-
gram architecture is given in [16]. In this paper, sim-
ulations were performed using state variable harmonic
balance [29] and convolution transient [30] methods.
One way of incorporating thermal e�ects in a circuit

simulator [31] is to make the thermal model look like
an electrical circuit. A problem with this strategy is to
provide separate circuits for the electrical and thermal
parts. This has been addressed by the concept of local
reference nodes, initially developed for integrated circuit
and EM �eld analysis of distributed microwave circuits
[32]. The local reference nodes guarantee that there is
no mixing of electric and thermal currents.
The circuit used in the simulations described below, is

shown in Fig. 3. The MESFET was modelled using the

Thermal

300K

Vs

Vdd

Vbias

Thermal ground (0 K)

1-Port

Fig. 3. Schematic of the simulated ampli�er with thermal circuit.

Curtice-Ettemberg cubic model with symmetric diodes
and capacitances [33]. The extra terminals in the MES-
FET schematic represent the thermal connections.
Transient analysis of distributed microwave circuits is

complicated by the inability of frequency independent
primitives to model distributed circuits. Generally, the
linear part of a microwave circuit is described in the fre-
quency domain by network parameters, especially where
numerical �eld analysis is used to model a spatially dis-
tributed structure. Inverse Fourier transformation of
these network parameters yields the impulse response
of the linear circuit. This has been used with convolu-
tion to achieve transient analysis of distributed circuits.
Transim uses a state variable approach for the convo-
lution transient [30]. An algebraic nonlinear system is
solved at each time step using a quasi-Newton method.
The thermal element is considered as a nonlinear ele-

ment for the convolution transient analysis. Therefore it
is treated in the time domain, Eq. (6). The chosen state
variable is the input power to the thermal system. The
thermal impedance matrix approach is used to calculate
the resulting temperature at each iteration to solve the
nonlinear system. The Kirchho� transformation is im-
plemented within the thermal element, so allowing non
linear interface matching between thermal subsystems.
The harmonic balance (HB) technique uses a linear

combination of sinusoids to approximate the periodic
and quasi-periodic signals found in a time-dependent
steady-state response. The system of nonlinear di�er-
ential equations describing the circuit can then be trans-
formed into a nonlinear algebraic system. Details of the
implementation of HB in Transim are given in [29].
In this analysis, the thermal element is modelled in

the frequency domain, Eq. (3). The elements of the

thermal impedance matrix are entered directly into the
modi�ed nodal admittance matrix of the circuit at each
frequency. The thermal element is then `embedded' in
the linear part of the HB formulation and does not in-
crease the size of the nonlinear system of equations. The
Kirchho� transformation for the linear thermal system
is transferred into the already non linear active device
model by appropriate state variable de�nition.
No separate thermal simulation is required for the cou-

pled electro-thermal calculation. All thermal impedance
matrices are generated by multiport thermal network el-
ements de�ned within the electro-thermal circuit simula-
tion engine, Transim. Thermal impedance matrices (in
either the time or frequency domain) are precomputed
from fully analytical expressions, prior to the coupled
electro-thermal simulation. They only have to be gener-
ated once, for any speci�ed thermal subsystem, and can
be stored for re-use in later simulations.
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Fig. 4. Drain-source current Ids (solid line) and drain-source
voltage Vds (dashed line) for a 5-�nger power transistor, from
transient electro-thermal analysis.

Fig. 4 illustrates transient decay in drain-source cur-
rent Ids, as a result of thermal variation under the in-
uence of a step input in drain-source voltage Vds, for a
multi-�nger power transistor, calculated using the ther-
mal impedance matrix approach implemented in Tran-
sim. 2-tone HB simulations were also performed illus-
trating intermodulation distortion due to ampli�er non
linearity. These simulations used the simplest one-port
thermal description of the power FET, returning surface
average temperature rise as a function of surface average
power dissipation over the active regions of the multi-
gate device. N-port thermal elements have also been
implemented in Transim. After precomputation of ther-
mal impedances, the coupled electro-thermal simulations
took a few seconds on a 500 MHz Pentium processor.

IV. Conclusion

The thermal impedance matrix method described here
represents an original approach to global thermal mod-
elling of complex device structures. It is based on
fully analytical expressions for solution of the heat di�u-
sion equation in rectangular thermal subvolumes (though
other regular geometries, such as cylinders, are readily
treated). The method describes arbitrarily complex 3-
dimensional volumes without the need to invoke �nite
volume, �nite element, �nite di�erence or boundary el-



ement methods. It requires no volume or surface dis-
cretisation, discretising only the interfaces between ther-
mal subsystems. It is compatible with network based
EM/electrical circuit simulators via interpretation as a
linear thermal network, with direct use of essentially
exact, generalised multiport network parameters, in ei-
ther frequency space or the time domain. This approach
avoids the need for explicit model reduction, apart from
that inherent in truncation of in�nite series at a �nite
number of terms su�cient to ensure convergence (and
in numerical Laplace inversion, when employed). The
method has no power or temperature restrictions, so is
not a small signal approximation.
This thermal impedance matrix method has been il-

lustrated by generation of thermal responses for test sys-
tems in both the frequency and time domains, and com-
pared against published results. Agreement was found to
be good. Integration of the thermal impedance matrix
model with the EM/electrical circuit simulator, Transim,
has been demonstrated, and leads to explicit prediction
of thermal e�ects at the circuit level. This modelling ca-
pability will be applied to the study and design of spatial
power combining systems.
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