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ABSTRACT

A recently introduced wave-based transient analysis uses re-
laxation and thus does not require large matrix decomposi-
tions at each nonlinear iteration. The use of waves results
in guaranteed convergence for any linear passive circuit and
some types of nonlinear circuits, but the convergence rate can
not be controlled. In this work, the wave-based transient anal-
ysis is re-formulated using a block Newton-Jacobi approach
and the convergence properties of the original and new formu-
lations are compared with the simulation of two microwave
circuits.

Index Terms— transient analysis, microwave circuits, wave
digital filters, state variables, Newton-Jacobi, scattering ma-
trix.

1. INTRODUCTION

Recently a new wave-based transient analysis aimed to mi-
crowave circuits was introduced in Reference [1]. This tran-
sient analysis formulation is based on fixed-point iterations
of waves at the ports of nonlinear devices. Unlike Newton’s
method, fixed-point (or relaxation) methods do not require a
matrix decomposition of a large Jacobian matrix at each non-
linear iteration. Also fixed-point methods exploit the latency
of the circuit by decoupling it into smaller pieces and solv-
ing each piece independently. Thus they are more suitable to
be implemented in parallel computer systems. Different re-
laxation methods have been previously proposed for circuit
simulation [5]. The greatest advantage of the approach pre-
sented in [1] compared to the traditional fixed-point iteration
approaches using voltages and currents is that the power de-
livered to nonlinear devices at any iteration is bounded [2].
Convergence is guaranteed for any linear passive circuit and
some types of nonlinear circuits. However the convergence
rate is in general slower than with Newton method.

Transient simulation of circuits using waves have been
proposed in a few works (Ref. [4] is one example) in the
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context of wave digital filters (WDF) [3]. WDF are discrete
structures that mimic an analog reference circuit, initially em-
ployed to implement digital filters but they can be applied to
model any circuit. Circuit simulation using relaxation in the
WDF context was explored in References [4] and [2]. The ap-
proach in [2] allows nonlinear devices to be modelled using
voltages and currents, and thus it is more suitable for imple-
mentation in a circuit simulator. In Ref. [1], the method pro-
posed in [2] was further developed with parameterized non-
linear device models, implemented in thefREEDATM [6] sim-
ulator and tested with a wider variety of circuits.

This paper proposes for the first time to use a block Newton-
Jacobi approach to accelerate the convergence of the non-
linear equations that arise in the transient analysis aimedto
microwave circuits presented in [1]. Other methods to solve
these equations exist but the Newton-Jacobi approach is at-
tractive because its implementation requires only minor mod-
ifications to the original fixed-point approach and shares the
fixed-point-method advantage of exploiting the latency of the
circuit. The convergence properties of the new and the orig-
inal approach are compared in this work. Relevant equa-
tions and the iteration scheme for Wave-Transient analysis
is presented in Section 2. Section 3 describes the proposed
Newton-Jacobi approach. It is shown in this section that the
proposed approach requires few additional computations com-
pared to the original fixed-point approach. Simulation results
for two microwave circuits are presented and discussed in
Section 4.

2. FORMULATION OF WAVE-BASED TRANSIENT
ANALYSIS

Equations are formulated following the state-variable approach
[7] used infREEDATM. The circuit is partitioned in sources,
linear and nonlinear parts (Fig. 1). For each nonlinear element
ports are defined with one terminal taken as the reference. The
linear network is assumed to be passive.

The nonlinear subnetwork is described by the following



Fig. 1. Network partition

parametric equations [7]:

vNL(t) = v

(

x(t),
dx

dt
, . . . ,

dmx

dtm
,xD(t)

)

(1)

iNL(t) = i

(

x(t),
dx

dt
, . . . ,

dmx

dtm
,xD(t)

)

(2)

wherevNL(t), iNL(t) are vectors of voltages and currents at
the ports of the nonlinear network,x(t) is a vector of state
variables andxD(t) is a vector of time-delayed state vari-
ables. All vectors in Eqs. (1) and (2) have the same size
equal to the number of ports of the nonlinear network (ns).

Applying numerical integration and discrete convolution
on the standard MNA equation and employing connectivity
information between the linear and nonlinear subnetwork the
following error function is obtained (the full derivation can be
found in [1])

ssv,n −MsviNL(xn)− vNL(xn) = 0 , (3)

wheressv,n is a vector that accounts for the sources and the
previous history of the network.ssv,n depends only on quan-
tities known at thenth time step. TheMsv matrix is constant
and represents the linear network. The size of the algebraic
system of nonlinear equations (3) isns × ns.

For each nonlinear port, an arbitrary reference resistance,
Rj with j the port number, is chosen. The incident and re-
flected power waves at Portj (aj and bj, respectively) are
defined as follows [3],

aj =
vj +Rjij

2
√

Rj

, bj =
vj −Rjij

2
√

Rj

,

wherevj and ij are the instantaneous values of the voltage
and current at the port. The total voltage (vj) and current (ij)
at Portj can be expressed as

vj =
√

Rj(aj + bj) , ij =
(aj − bj)
√

Rj

.

Thus voltage and current vectors corresponding to all nonlin-
ear device ports are related to the power wave vectors (a and
b) as follows:

vNL = D(a + b) , (4)

iNL = D
−1(a− b) , (5)

whereD is a diagonal matrix with the square roots of corre-
sponding reference port resistances in the main diagonal.

The relaxation method is based on propagating reflections
of waves between the linear and nonlinear subnetworks. As-
sume an initial vector of reflected waves (b

(k)
n ) is known,

where(k) denotes the iteration number. The corresponding

waves sent by the linear network (a
(k+1)
n ) can be calculated

by replacing Eqs. (4) and (5) in Eq. (3),

a
(k+1)
n = Sb

(k)
n + a0,n , (6)

with

S = [MsvD
−1 +D]−1[MsvD

−1
−D] , (7)

a0,n = −[MsvD
−1 +D]−1

ssv,n , (8)

here,S is the scattering matrix of the linear network anda0,n

is the contribution of sources and previous history to the inci-
dent waves.

3. BLOCK NEWTON-JACOBI METHOD

The proposed block Newton-Jacobi method is based on split-
ting the scattering matrix,S into a sum of a block-diagonal
matrix (SB) and another matrix with zeros in the diagonal
blocks (SO) [2]:

S = SB + SO . (9)

Each block inSB is associated to one nonlinear device,i.e.
the rows and columns of each block correspond to the ports of
one nonlinear device. TheSO matrix represents the couplings
between nonlinear devices. The basic idea of the approach is
to include the corresponding block ofSB in the equations for
each nonlinear device in the following way:

vNL(xn) = D(an − SBbn + bn) , (10)

iNL(xn) = D
−1(an − SBbn − bn) . (11)

The contribution ofSO is considered in the main relaxation
loop. Thus Eq. (6) is modified as follows:

a
(k+1)
n = SOb

(k)
n + a0,n (12)

where(k) denotes the relaxation iteration number. Note that
if there is no coupling between nonlinear devices (i.e., SO is
zero) then Eqs. (10) and (11) produce the exact solution of
the system. If the coupling is not very strong it is expected



that the solution produced by these equations is a better ap-
proximation than the solution obtained by plain relaxation.

Newton’s method is used to solve Eqs. (10) and (11). By
rearranging them, the error functions,Φv( ) andΦi( ) are
obtained:

Φv(xn,bn) = D
−1

vNL(xn)− an − bn(I − SB) (13)

Φi(xn,bn) = DiNL(xn)− an + bn(I + SB) (14)

where,I is the identity matrix. The number of equations and
unknowns is2ns. The unknowns are vectorsbn andxn. The
an vector contains the waves incident to the nonlinear de-
vices and is calculated from Eq. (12). Note that this system of
equations is decoupled for each nonlinear device, thus the Ja-
cobian matrices arising from it are block-diagonal with small
diagonal blocks, typically no more than6 × 6 elements. The
Jacobian matrix is as follows:

J =

[

D
−1JV −(I − SB)
DJI +(I + SB)

]

, (15)

where,JV = ∂vNL/∂xn andJI = ∂iNL/∂xn. These are
the block-diagonal Jacobian matrices that are explicitly avail-
able infREEDATM.

The updates from each Newton iteration are calculated as
follows:

∆x
(ν+1) =

[

(I− SB)D
−1

JV + (I+ SB)DJI

]

−1

{

− [I+ SB]Φ
(ν)
i − [I− SB]Φ

(ν)
v

}

, (16)

∆b
(ν+1) = [I− SB]

−1
(

−Φ
(ν)
i −DJI∆x

(ν+1)
)

, (17)

were(ν) is the Newton iteration number,∆x and∆b are the
updates of state variables and reflected waves at each Newton
iteration. Note that Newton method is used only to approx-
imate the solution for one iteration. Most of the time only
a few iterations (often only one) are required to reach an ac-
ceptable tolerance, as will be shown in Section 4.

One additional matrix decomposition ([I − SB]
−1) that

was not required with plain relaxation is required for calcu-
lating∆b with the Newton-Jacobi approach. But this matrix
is small and the decomposition is needed only once for the
whole simulation, as long as the time step is kept constant
and therefore introduces very little overhead.

The effect of solving Eqs. (10) and (11) using Newton
method can be summarized as a nonlinear vector function
G( ),

bn = G(an) . (18)

Thex vector is not included here sincex is only required at
the nonlinear device level (Eqs. (16) and (17)) and is not re-
quired in the main iteration loop. Thus the Newton-Jacobi
scheme can be expressed as a fixed-point scheme by combin-
ing Eqs. (12) and (18):

b
(k+1)
n = G(SOb

(k)
n + a0,n) . (19)

In addition a vector extrapolation method called Mini-
mum Polynomial Extrapolation (MPE) [8] is applied to the
vector sequence generated by Eq. (19) to accelerate the con-
vergence rate. The theory for MPE is covered in Ref. [1]. The
algorithm for the analysis is provided in Alg. 1. Here,K is

Algorithm 1 Newton-Jacobi Wave-Based Transient Analysis
calculateMsv ,
calculateS using Eq. (7),
repeat

initial guess is set to the results in previous step,
updatessv,n,
calculatea0,n using Eq. (8),
repeat

calculatea using Eq. (12).
repeat

apply Eq. (16) and Eq. (17) to obtain the approximation ofb.
until (errornl ≤ tolnl)
updateb for K iterations,
then extrapolate.

until (error ≤ tol)
increase time, t = t+ h.

until (t < tend)

the number of vectors to extrapolate,tol is the predefined tol-
erance,h is the time step size andtend is the simulation end
time. All those are set as simulation parameters.tolnl is the
predefined tolerance for nonlinear iteration (tolnl >> tol).

4. SIMULATION RESULTS

The proposed block Newton-Jacobi wave-based transient anal-
ysis was implemented in thefREEDATM simulator in two anal-
ysis types: WaveTran2and WaveTran2-E. WaveTran2uses
LU decomposition in Eq. (17) at each iteration.WaveTran2-E
is more efficiently implemented and uses a matrix-vector mul-
tiplication algorithm that considers the particular structure of
SO in Eq. (12) and Cholesky decomposition in Eq. (17) that
is performed just once. The performance of the proposed ap-
proach is compared with the original (plain relaxation) wave-
based transient analysis, type:WaveTran[1], and the state-
variable transient analysis, type:Tran2 which uses the for-
mulation of Eq. (3) [7]. Results from Tran2 are assumed to be
correct, as these analysis has been previously verified against
measurements and other circuit simulators [9,10]. The perfor-
mance of the proposed method for different circuits is sum-
marized in Table 1. All simulations use fixed time step and
tol = 10−8 andtolnl = 0.5.

Circuit 1, shown in Fig. 2, is a nonlinear transmission line,
or solitonline [10], composed of 47 diodes and 48 lossy trans-
mission lines. Circuit 2 is shown in Fig. 3 and is composed
of 5 MMIC LNA [9] each connected to a soliton line (Circuit
1) at the output stage, each LNA fed with a different input
frequency. The size of the modified nodal admittance matrix
(MNAM) in each circuit are given in the table to give an idea
of the problem size. Values in the table are average per time
step except Newton iteration, this is the average value per



Table 1. Summary of simulation results
Circuit Soliton (Fig. 2) Multi-MMIC (Fig. 3)

NL ports (ns) 47 252

MNAM Size 2017 12860

Ref. Port Res. (Ω) 440 50

In. power level (dBm) 30 19

Time Steps 5000 4000

Iter. (WaveTran) 5 13

Iter. (WaveTran2) 4 5

Newton Iter. (WaveTran2) 1.13 1.00

WaveTran Sim. T. (s) 51.7 734.93

WaveTran2 Sim. T. (s) 57.54 458.33

WaveTran2-E Sim. T. (s) 44 355.42

Tran2 Sim. T. (s) 24.03 1576

Fig. 2. Soliton-line schematic

Fig. 3. Multi MMIC-Soliton-line schematic
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Fig. 4. Output voltage of Soliton Line
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Fig. 5. Voltage at Output 5 of the Multi MMIC-Soliton-line

relaxation iteration. The reference resistance used for each
simulation is shown in the table. The same value of refer-
ence resistance is used for all ports as used in Ref. [1]. In the
current implementation this value is set manually as a simu-
lation parameter. The Input Power Level row shows the AC
power level of the input sources referred to 50Ω. The Itera-
tions rows, (WaveTranandWaveTran2) compare the number
of iterations needed forWaveTranandWaveTran2. The last
four rows compare the total running time usingWaveTran,
WaveTran2, WaveTran2-E, andTran2. All simulated output
voltages are compared with that fromTran2and two zoom in
plots are presented in Figs. 4 and 5. As expected the results
from both simulation methods agree. For all simulations on
average only one Newton iteration is necessary at the nonlin-
ear device level. Thus the computational cost of using New-
ton’s method to obtain reflected waves from nonlinear device
models formulated in terms of voltages and currents is not
too expensive. Following the same trend shown in Ref. [1],
WaveTranis slower thanTran2for the smaller circuit (Circuit



1) but as the circuit size increases the wave method becomes
more efficient as it does not require large matrix decomposi-
tions afterS has been calculated. It can also be observed in
Table 1 thatWaveTran2-Eis always faster thanWaveTranand
even the less efficiently implementedWaveTran2is faster for
Circuit 2.

5. CONCLUSIONS AND DISCUSSION

A modification of a novel transient analysis approach was
presented in this paper. The proposed wave-based transient
analysis solves the nonlinear equations using a block Newton-
Jacobi algorithm. As with the original wave-based transient
analysis, no matrix decomposition of a large Jacobian ma-
trix is required at each nonlinear iteration. Thus the proposed
method is also attractive to be implemented in parallel com-
puter systems.

It was shown that the addition of Newton-Jacobi requires
only a few extra computations compared to the original fixed-
point approach. The simulation results presented here show
that the Newton-Jacobi-based method converges faster and is
more efficient for some circuits.

Although these results are encouraging some issues re-
main to be addressed. For example the choice of Newton-
Jacobi blocks used in the current implementation may not be
optimal for some circuit configurations. In circuits where two
(or more) nonlinear devices are connected in parallel the cou-
pling between them is strong and thus the two devices should
be considered in the same block for optimum performance.
It is also worth noting that although the block Newton-Jacobi
method generally improves the convergence rate, some of the
convergence properties of the original relaxation approach are
lost. One of the ideas that could address this issue is to im-
plement an adaptive algorithm that uses the Newton-Jacobi
approach by default and switches to plain relaxation when
convergence is poor. Another issue is the optimum selec-
tion of the reference resistance. The reference resistancehas
some effect on the convergence rate and the optimum value
may be different for each port and also depends on the oper-
ating point. In the current implementation this resistanceis
the same for all ports and manually set, but in the future a
better approach should be investigated.
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