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Abstract

In this paper we propose a new adaptive time step con-
trol algorithm for the slow time dimension of time do-
main envelope transient (TD-ENV) simulation. The
algorithm uses two models: the first is the set of
differential-algebraic equations that represent the cir-
cuit. The second is a ‘coarse’ model that is cheap to
evaluate. The optimum time step is estimated from an
error term obtained from the coarse model. The accu-
rate model is then solved using the near optimum time
step. The acceptable error for the time step estimation
is adapted according to the dynamics of the system. We
describe the time step control algorithm and present a
case study of the transient analysis of a rectifier circuit
powered by a high-frequency pulse train with a slowly-
varying pulse duty cycle. The simulations show that few
time steps are rejected compared with a traditional time
step control algorithm.
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1 INTRODUCTION

Time domain envelope transient (TD-ENV) is an enve-
lope following method based on a bi-dimensional (or in
general, multi-dimensional) representation of the time
domain [1]. This method is convenient for the analysis
of circuits with excitations with widely separated time
scales because it requires the calculation of far fewer
solution points. Consider a voltage described by the
following function:
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were τ1 and τ2 are time constants. A graphical repre-
sentation of this function with τ1 = 25 s and τ2 = 0.1 s
is shown in Fig. 1. Many sample points are required to
represent this function. For example, 2000 samples were
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Figure 1: Plot of the function f(t)

needed in Fig. 1 for a total time of 10 s. The main idea
in the TD-ENV method is to represent signals in more
than one time dimension according to the scale of varia-
tion. In principle the signals are required to be periodic
in at least one of the dimensions. For example, f(t) is
represented by the following bi-dimensional function:

f̂(t1, t2) =
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.

This function is plotted in Fig. 2, for the same values
of τ1 and τ2 used before. Only 200 sample points were
necessary to represent a much longer time interval. The
original function can be easily recovered by setting t1 =
t and t2 = t.

The system of differential-algebraic equations (DAE)
that describe a circuit must be modified to use the bi-
variate representation. Assume a nonlinear circuit is
described by a DAE of the form:

q̇(x) + f(x) = b(t). (1)

Here x represents the voltages and currents in the cir-
cuit, q(x) the charge terms, f(x) the resistive terms and
b(t) represents the sources. It has been proved [1] that
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Figure 2: Plot of the function f̂(t1, t2)

if x̂(t1, t2) is the solution of

∂q(x̂)

∂t1
+

∂q(x̂)

∂t2
+ f(x̂) = b̂(t1, t2), (2)

then x(t) = x̂(t, t) is the solution of the system of Eq. 1.
For the TD-ENV problem, the boundary conditions are:

x̂(t1, t2) = x̂(t1, t2 + T2),

here, T2 is the period of the oscillatory excitation. Now
two problems must be solved: a boundary problem in
the direction of t2 and an initial condition problem in
the direction of t1. As suggested in [1], the solution
of the first problem can be obtained in several ways,
for example with the harmonic balance technique [2].
In this paper we have chosen a finite difference time
domain (FDTD) approach. The problem in the t1 vari-
able can be solved with standard integration techniques
such as backward Euler (BE) and trapezoidal integra-
tion. It has been reported in the literature [3,4] that the
differential equations in this (t1) direction are stiff and
at times present fast variations. A variable time step
is then necessary for an efficient simulation. As each
step in the direction of t1 involves the (relatively ex-
pensive) solution of a FDTD problem, it is particularly
important to minimise the number of time steps in the
direction of t1. In the following section we provide an
outline of a proposed time-step control algorithm that
attempts to minimise the number of rejections. Then
we present a case study of the transient analysis of a
rectifier circuit powered by a high-frequency pulse train
with a slowly-varying pulse duty cycle.

2 THE TIME-STEP CONTROL AL-

GORITHM

The basic idea of the algorithm is to use a coarse model
of the system to predict what is the size of the opti-
mum time step before solving the actual FDTD prob-
lem. Once the time step size is determined, the actual
set of equations that represent the circuit are used to
solve the FDTD problem and the truncation error is
checked. The function err(h) is used to estimate the
optimum time step h. The pseudo-code of this function
is the following:

1. Use extrapolation as a guess

2. Estimate initial residual in Newton method using
coarse model

3. Return the norm of residual minus tol.

This function returns zero when the norm of the resid-
ual is exactly equal to the parameter tol. If the return
value is negative, that means that the time step could be
larger. The pseudo-code of the main algorithm follows:

1. h = hlast

2. if |err(h)| < 0.2 × tol then

(a) if err(hmin) > 0 then h = hmin

(b) if err(hmax) < 0 then h = hmax

(c) otherwise find h such that |err(h)| < 0.1× tol

3. solve FDTD problem

4. estimate norm of normalised truncation error (E)

5. δ = E/Emax

6. if δ small then increase tol

7. if δ large then decrease tol

8. if h == hmin then δ = 1

9. if δ > 1 then reject point and go to 2

10. hlast = h

11. t1 = t1 + h

12. if not finished go to 1.

Here Emax is the maximum allowable value of the es-
timation of the normalised local truncation error (E).
The parameter tol is updated at each time step accord-
ing to the value of δ.

The coarse model can be obtained for example by
linearising the original set of equations around the last
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Figure 3: A rectifier powered by a variable duty-cycle
pulse source.

solution point. The resulting function err(h) is still non-
linear because it includes the effect of the sources. The
linearised model is most useful when the nonlinear ele-
ment equations are formulated in parametric form (i.e.,
currents and voltages are expressed as functions of state
variables) because frequently sharp nonlinearities, usu-
ally exponential functions, can be avoided. The value
of tol can be adjusted to always provide a good initial
guess to the subroutine that solves the FDTD problem.
This is important to minimise the number of iterations
to solve each nonlinear FDTD problem.

3 CASE STUDY

We present a case study of the transient analysis of a
rectifier circuit powered by a high-frequency pulse train
with a slowly-varying pulse duty cycle. The circuit is
shown in Fig. 3 and is described by the following differ-
ential equations:

vp(t) − vd(x) − vL = 0

id(x) −
vL

R
− C

dvL

dt
= 0,

where vd and id represent the voltage and current in
the diode, respectively. The state variables of the sys-
tem are the load voltage vL and the diode parameter
x. The parametric diode model is described in [5]. The
introduction of this state-variable based model of the
diode improved the convergence of the algorithm. The
equations must be now converted into PDE form,

vp(t1, t2) − vd(x) − vL = 0

id(x) −
vL

R
− C

(

∂vL

∂t1
+

∂vL

∂t2

)

= 0.

Now the equations are discretised using the BE formula:

vp(t
n,m
1

, tn,m
2

) − vn,m

d − vn,m
L = 0

in,m

d − vn,m
L /R

−C(vn,m
L − vn−1,m

L )/h1

−C(vn,m
L − vn,m−1

L )/h2 = 0,
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Figure 4: Bidimensional plot of the load voltage (vL)

where n and m represent the index value in the t1 and
t2 directions, respectively. The periodic boundary con-
ditions in the t2 direction are:

vn,−1

L = vn,mmax

L .

In this example the coarse model for index n is made by
linearising the diode model around all m solution points
at the previous point in the t1 direction (n − 1):

in,m

d ≈ in−1,m

d +
∂in−1,m

d

∂x
∆xn,m

vn,m

d ≈ vn−1,m

d +
∂vn−1,m

d

∂x
∆xn,m,

where ∆xn,m is the increment in the value of the state
variable. The required derivatives are already available
from the nonlinear solution of the previous point.

The TD-ENV method to simulate this circuit was im-
plemented in the Octave [6] program. The following pa-
rameters were used: R = 2 kΩ, C = 10 nF, diode satu-
ration current: 1 fA, diode series resistance: 100 Ω, peak
pulse level: 2 V, period: 1 µs and duty cycle: 0.3+0.2c,
where c is a factor that varies between +1 and −1 with
a period of 2 ms. The output voltage and the diode
parameter are shown in Figures 4 and 5, respectively.
It can be observed that the circuit has a strong nonlin-
ear behaviour. Fig. 6 shows the variation of the time
step (h). The size of the time step is maximum dur-
ing the times the duty cycle is constant and is reduced
when the duty cycle varies. For comparison purposes,
a simulation using a more traditional time-step control
algorithm [7] was also performed. In that algorithm,
only the truncation error is used to determine the next
time step size. The stop time, number of grid points
in the t2 direction and tolerances for both simulations
are the same. Table 1 summarises the results of both
simulations. It is observed that the proposed algorithm
requires less than half the number of FDTD solutions.
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Figure 5: Bidimensional plot of the diode parameter (x)
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Figure 6: Time step in the direction of t1

4 CONCLUSIONS

We have implemented a time-step control method to
simulate circuits in the time domain using the MPDE
approach, enabling strong nonlinearities to be handled
effectively. This technique represents a system of differ-
ential equations with widely separated time scales effi-
ciently by using multivariate functions. This leads to a
partial differential form for the system equations. Com-
putation and memory are independent of the separa-
tion between time scales, leading to considerable savings
when the disparity is large. This technique is applicable
to circuits with widely separated time scales, that are
difficult or impossible to simulate with previous tech-
niques.

The simulation results show that with the new

Accepted Rejected Total
Proposed 354 76 430
Traditional 581 324 905

Table 1: Comparison of the number of time steps with
the proposed and traditional time-step control methods

method fewer time steps are rejected compared with
a traditional time step control algorithm. Also, the
time step is chosen such that the residual of the ini-
tial guess in the Newton method is lower than some
tolerance. This helps to reduce the number of Newton
iterations necessary. This is particularly important with
TD-ENV simulations because each step in the slow di-
rection involves a relatively expensive solution of a non-
linear boundary-type problem (FDTD) in the fast time
dimension. We have achieved these results by extending
the techniques used for transient analysis of circuits to
a bi-dimensional problem. More research is necessary
to see if any technique used for the numerical solution
of PDE may applicable in this kind of problem.
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