EELE 5131

Practice Problems for Midterm - Winter 2019

Parameters for all problems: $I_{S Q n}=280 \mathrm{nA}, V_{\text {thn }}=0.5 \mathrm{~V},\left|\partial L / \partial V_{D S}\right|_{n}=0.03 \mu \mathrm{~m} / \mathrm{V}, I_{S Q p}=80 \mathrm{nA}$, $V_{\text {thp }}=-0.55 \mathrm{~V},\left|\partial L / \partial V_{D S}\right|_{p}=0.04 \mu \mathrm{~m} / \mathrm{V}, n_{n}=n_{p}=1.3, t_{O X}=6 \mathrm{~nm}$ and $A_{\beta}=3 \% \mu \mathrm{~m}$.

Problems and Questions

1. The following layout is for a transistor in a process with p-type substrate.

- What layer is missing to form an NMOS transistor?
- What layers are missing to form a PMOS transistor instead?

Active (thin oxide)
Poly
Metal 1
Contact

Answers: (a) $\mathrm{n}+$, (b) $\mathrm{p}+$ and N -well
2. The following layout is for a process with p-type substrate.

- Draw an schematic diagram of the circuit in this layout. Use the provided node labels.
- Is there any missing layer(s) and if yes and where? (mark in the figure and explain).

Answer: (b) Active layer missing in substrate contact
3. A $1: 1$ PMOS mirror is designed with 2 unit transistors with $(W / L)=(10 \mu \mathrm{~m} / 1 \mu \mathrm{~m})$. The mirror is connected as shown below. The load resistor is $R=10 \mathrm{k} \Omega$ and the supply voltage is 1.8 V .

(a) Draw a current mirror schematic. Include input current source, load resistor and bulk connections.
(b) Calculate the source-drain voltage in each transistor for the following values of $I_{\text {BIAS }}: 25 \mathrm{nA}$, $5 \mu \mathrm{~A}$ and $40 \mu \mathrm{~A}$.
(c) Estimate the maximum load voltage and the output resistance of the mirror for $I_{B I A S}=40 \mu \mathrm{~A}$.
(d) Calculate the standard deviation (in \%) in output current when $I_{\text {BIAS }}=5 \mu \mathrm{~A}$ separately due to threshold voltage mismatch alone, specific current mismatch alone and the two combined.
4. Design a simple PMOS current mirror subject to the following specifications:

- Supply voltage is 3 V .
- The operating output voltage range must be from zero up to 2.75 V .
- The input and output currents are equal to $60 \mu \mathrm{~A}$.
- The output current must change by 3% or less with a decrease of 1 V in the output voltage ($V_{\text {out }}$).
- Minimize gate area as much as possible.

Show the schematic with transistor dimensions for full marks.
5. Re-design the previous current source for an input current of $240 \mu \mathrm{~A}$ and an output current of $30 \mu \mathrm{~A}$. Use unit transistors for good matching.
Answer: use the same design as in (3), with 4 units in parallel for input branch and two in series for output branch.
6. Calculate the resistor needed to generate the input current in Problem 5.
7. Neglecting channel-length modulation, estimate the difference between the input and output currents in your design in Problem 4 when $V_{\text {th }}$ mismatch between transistors is 15 mV .
8. Design a simple NMOS current mirror subject to the following specifications:
(a) Supply voltage is 3.3 V .
(b) The mirror must operate correctly with an output voltage of at least 0.25 V .
(c) The input current is $60 \mu \mathrm{~A}$ and output current is $90 \mu \mathrm{~A}$.
(d) The output current must change by 2% or less with an increase of 1 V in the output voltage ($V_{\text {out }}$).
(e) Minimize gate area as much as possible. Assume that due to matching requirements, minimum gate dimension is $1 \mu \mathrm{~m}$.

Show schematic and unit transistor dimensions for full marks.
9. Neglecting channel-length modulation, estimate the difference between the input and output currents in your design of the previous problem when $V_{t h}$ mismatch between transistors is 5 mV .
10. In the figure, $I_{i n}=20 \mu \mathrm{~A}, V_{D D}=2.5 \mathrm{~V}$ and $(W / L)_{1}=(W / L)_{2}=(2 \mu \mathrm{~m} / 2 \mu \mathrm{~m})$.
(a) Calculate $I_{\text {out }}$ considering the effect of channel-length modulation, assuming perfect matching. Show calculation steps.
(b) Neglecting channel-length modulation, estimate the standard deviation in output current due to transistor mismatch.

11. In the figure, $I_{\text {in }}=0.5 \mu \mathrm{~A}, V_{D D}=3 \mathrm{~V}$ and all transistors are equal with $(W / L)=20$. Justify your answers.
(a) Specify regions of operation for each of M1, M2 and M3: inversion level (weak, moderate or strong) and triode or active.
(b) Neglecting channel-length modulation calculate $i_{f 2}$ and $i_{r 2}$.

12. In the figure below, $V_{D D}=1.6 \mathrm{~V}, I_{\text {ref }}=50 \mu \mathrm{~A},(W / L)_{1}=(20 \mu \mathrm{~m} / 1 \mu \mathrm{~m})$ and $(W / L)_{2}=$ $3(W / L)_{3}=(10 \mu \mathrm{~m} / 1 \mu \mathrm{~m})$.

(a) Calculate the DC voltage required at the input to bias the amplifier in the high-gain region.
(b) Calculate the output voltage range for high gain.
(c) Calculate the transconductance of M1.
(d) Calculate the output resistance of the amplifier.
(e) Calculate the small-signal gain of the amplifier.
13. Design a CS amplifier with current-mirror load as shown in the figure for a gain of at least 180 and an output voltage swing of at least $\pm 0.5 \mathrm{~V}$. The supply voltage is $V_{D D}=1.8 \mathrm{~V}$, the reference current is $50 \mu \mathrm{~A}$ and $L \geq 1 \mu \mathrm{~m}$ for all transistors. Try to minimize area.

14. Calculate the output resistance of your designed amplifier.

