## ENGI 5131 Midterm Sample Problems — Winter 2013

ACM parameters:  $I_{SQn} = 280$  nA,  $V_{thn} = 0.5$  V,  $|\partial L/\partial V_{DS}|_n = 0.03 \ \mu m/V$ ,  $I_{SQp} = 80$  nA,  $V_{thp} = -0.55$  V,  $|\partial L/\partial V_{DS}|_p = 0.04 \ \mu m/V$ ,  $L_D = 0$  and  $n_n = n_p = 1.31$ .

## **Problems and Questions**

- 1. Design a simple PMOS current mirror subject to the following specifications:
  - Supply voltage is 3 V.
  - The operating output voltage range must be from zero up to 2.75 V.
  - The input and output currents are equal to 60  $\mu$ A.
  - The output current must change by 3 % or less with a decrease of 1 V in the output voltage  $(V_{out})$ .
  - Minimize gate area as much as possible.

Show the schematic with transistor dimensions for full marks.

- 2. Re-design the previous current source for an input current of 200  $\mu$ A and an output current of 50  $\mu$ A. Use unit transistors for good matching.
- 3. Calculate the resistor needed to generate the input current in Problem 2.
- 4. Neglecting channel-length modulation, estimate the difference between the input and output currents in your design in Problem 1 when  $V_{th}$  mismatch between transistors is 15 mV.
- 5. Design a CS amplifier with current-mirror load as shown in the figure for a gain of at least 180 and an output voltage swing of at least  $\pm 1$  V. The supply voltage is  $V_{DD} = 3$  V, the reference current is 100  $\mu$ A and  $L \geq 1 \mu$ m for all transistors. Try to minimize area.



- 6. Calculate the DC input voltage required in the amplifier that you designed in the previous problem.
- 7. In the amplifier shown below, what is the maximum small-signal gain that can be achieved? Justify your answer. You are free to adjust all other circuit parameters.



8. Given  $(W/L)_2 = 0.5$ ,  $V_{DS1} = 0.2$  V and  $V_{DD} = 3$  V, calculate what is the maximum gain that can be achieved by the circuit shown below:



- 9. For an inverter with minimum gate length (0.4  $\mu$ m) and  $W_p = 5 \ \mu$ m, estimate  $W_n$  for a threshold voltage equal to 1.5 V with a supply voltage of 3 V (you can use strong inversion equations).
- 10. The following layout is for a transistor in a process with p-type substrate.
  - What layer is missing to form an NMOS transistor?
  - What layers are missing to form a PMOS transistor instead?



- □ Active (thin oxide)
- 🖾 Poly
- Metal 1
- Contact