EELE 5131

Practice Problems for Final Exam — Winter 2019

Parameters for all problems: $I_{SQn}=280$ nA, $V_{thn}=0.5$ V, $|\partial L/\partial V_{DS}|_n=0.03~\mu\text{m/V}$, $I_{SQp}=80$ nA, $V_{thp}=-0.55$ V, $|\partial L/\partial V_{DS}|_p=0.04~\mu\text{m/V}$, $n_n=n_p=1.3$, $t_{OX}=6$ nm and $A_\beta=3~\%\mu\text{m}$. Minimum allowed dimension for analog circuits is $1~\mu\text{m}$.

- 1. Design a cascode high-swing current mirror using the least possible gate area. Supply voltage is 2.8 V. Input current is 2 μ A, output current is 10 μ A. Output voltage range is 500 mV 2.8 V. Current mismatch due to channel-length modulation should be no more than 1%. All transistors must be implemented by combinations of a unit transistor.
 - Specify inversion levels for the transistors in each branch.
 - \bullet For each transistor, specify aspect ratio (W/L) and number of unit transistors in series/parallel.
- 2. Repeat the previous problem for a PMOS mirror with an output voltage range of 0-2.3 V.
- 3. The following layout is for a process with p-type substrate. Draw an schematic diagram of the circuit in this layout. Show transistor substrate connections and node labels in the schematic.

- 4. The differential amplifier shown in the figure has been designed to operate as follows: $i_{f1}=i_{f2}=15$, $i_{f3}=i_{f4}=140$, $i_{f5}=200$. Assume all transistors have $L=1.5~\mu m$. Other circuit parameters: $V_{DD}=1.8~\rm V$, $C_L=0.5~\rm pF$. Make reasonable assumptions for any missing data. Justify your answers and derive expressions for full marks.
 - (a) Calculate the input common-mode voltage range.
 - (b) Calculate the output voltage range when the input common-mode voltage is 1.1 V
 - (c) Calculate the differential voltage gain.
 - (d) Calculate the CMRR assuming perfect matching.
 - (e) Calculate the -3 dB bandwidth of the amplifier (assuming it is driven by a differential ideal voltage source).
 - (f) Calculate all transistor widths for a slew rate equal to 200 V/ μ s.

5. Repeat the previous problem but use a complementary amplifier: PMOS source coupled input with an NMOS current mirror load. Draw schematic first. For part (b) assume the input common-mode voltage is 0.5 V.

- 6. The differential amplifier shown in the figure has been designed to operate as follows: $i_{f1}=i_{f2}=20$, $i_{f3}=i_{f4}=100$, $i_{f5}=150$. Assume all transistors have the same channel length, $L=1~\mu m$ and $M_3\equiv M_{3'}$, $M_4\equiv M_{4'}$ and $M_5\equiv M_{5'}$. Supply voltages are $V_{DD}=V_{SS}=0.9~\rm V$.
 - (a) Calculate the differential-mode gain.
 - (b) Calculate the input common-mode voltage range. Assume the current source (I_{BIAS}) needs at least 0.22 V to work.
 - (c) Calculate the output voltage range.
 - (d) Calculate all transistor widths if $I_{BIAS} = 50 \ \mu A$.
 - (e) Calculate the amplifier maximum slew-rate with a load capacitance of 1 pF.

- 7. Which answers change in the previous problem if $(W/L)_{4'} = 2(W/L)_4$ and $(W/L)_{3'} = 2(W/L)_3$? Calculate the new answer(s).
- 8. Repeat part (b) of the previous problem for the complementary amplifier (exchange NMOS and PMOS and invert supply voltages).
- 9. For an inverter with $L=0.2~\mu m$ for both transistors and $W_n=1~\mu m$, estimate W_p for a threshold voltage equal to 0.45 V with a supply voltage of 1.6 V. Neglect short-channel effects but note that one of the transistors is not in strong inversion at the threshold.
- 10. Estimate the rise and fall times of the inverter of the previous problem when it is loaded with a 0.2 pF capacitor.

- 11. The current source of the figure requires all transistors to operate in active mode. $(W/L)_1 = (W/L)_2 = 1$, $(W/L)_3 = 2$, the desired output current is 1 μ A with M4 operating with an inversion level $i_{f4} = 20$.
 - (a) Find the resistor value and $(W/L)_4$
 - (b) Calculate the minimum V_{DD} required by this circuit.

- 12. In the figure, $(W/L)_2 = 40(W/L)_1 = 1.2$, and the desired output current at room temperature is $1 \mu A$.
 - (a) Calculate the voltage drop at the resistor at room temperature.
 - (b) Calculate the resistor value.
 - (c) Calculate the output current at 0° C.

