## ENGI 5131 Sample Problems for Final — Winter 2016

ACM parameters:  $I_{SQn} = 280$  nA,  $V_{thn} = 0.5$  V,  $|\partial L/\partial V_{DS}|_n = 0.03 \ \mu m/V$ ,  $I_{SQp} = 80$  nA,  $V_{thp} = -0.55$  V,  $|\partial L/\partial V_{DS}|_p = 0.04 \ \mu m/V$ ,  $L_D = 0$  and  $n_n = n_p = 1.3$ . Assume  $L \ge 1 \ \mu m$  for good matching.

- 1. Explain what is the *Latchup* phenomenon and what must be done in the circuit layout to prevent it.
- 2. Symbolically, derive the small-signal gain  $(v_o/v_i)$  for the following amplifier. Simplify the result for  $r_o \gg 1/g_{ms}$ .



- 3. The differential amplifier shown in the figure has been designed to operate as follows:  $i_{f1} = i_{f2} = 15$ ,  $i_{f3} = i_{f4} = 140$ ,  $i_{f5} = 200$ . Other circuit parameters:  $V_{DD} = 2$  V,  $C_L = 0.5$  pF. Supply voltage is  $V_{DD} = 3$  V. Make reasonable assumptions for any missing data. Justify your answers and derive expressions for full marks.
  - (a) Calculate the input common-mode voltage range.
  - (b) Calculate the output voltage range as a function of the input common-mode voltage.



4. Estimate the maximum input-referred offset voltage of the amplifier of the previous problem assuming M1 and M2 have a mismatch in  $V_{th}$  of 1.5 mV and a mismatch in  $I_{SQ}$  of 3 nA.

- 5. Design a differential amplifier based on the schematic for the previous problem with the following specifications:  $V_{DD} = 3.3$  V differential gain must be greater or equal than 1000, CMRR ge 70 dB, tail current is 10  $\mu$ A and input common-mode range must include  $V_{DD}$ .
- 6. Using the same transistor aspect ratios of the previous problem and same biasing current,  $(M_3 \equiv M_{3'} \text{ and } M_4 \equiv M_{4'})$ , design  $M_5$  and  $M_{5'}$  in the schematic below to increase the gain to 1300 and an output voltage range lower limit of 0.2 V.

