ENGI 5131 Assignment 1 — Winter 2019

- Parameters for NMOS transistors: $k'_n = 180 \ \mu A/V^2$ and $V_{tn} = 0.65 \ V$, $|\partial L/\partial V_{DS}|_n = 0.03 \ \mu m/V$
- Parameters for PMOS transistors: $k_p' = 50 \ \mu A/V^2$ and $V_{tp} = -0.6 \ V$, $|\partial L/\partial V_{DS}|_p = 0.04 \ \mu m/V$
- 1. Find the region of operation and calculate the bias points (I_D, V_{DS}) of M_1 and M_2 . In the circuit of the figure, $R_1 = 40.4 \text{ k}\Omega$, $R_2 = 59.6 \text{ k}\Omega$, $V_{DD} = 5 \text{ V}$, $(W/L)_1 = 6 \text{ and } (W/L)_2 = 18$. Neglect channel-length modulation.

- 2. In the circuit below, $(W/L) = (20\mu m/0.8\mu m)$. and $R_D = 10 \text{ k}\Omega$. Neglect channel-length modulation except for the last question.
 - (a) Derive an analytic expression for v_O as a function of v_I . You may need a sectionally-defined function to consider the different regions of operation.
 - (b) Sketch a plot v_O as a function of v_I . If this circuit is used as an amplifier, for what value of v_I the gain is maximum? Justify your answer.
 - (c) Calculate the value of the maximum gain.
 - (d) Calculate Δv_O if $\Delta v_I = -5$ mV when the circuit is biased at the point of maximum gain.
 - (e) Use small-signal analysis to recalculate the maximum gain considering channel-length modulation.

