ENGI 5131

Assignment 1 - Winter 2019

- Parameters for NMOS transistors: $k_{n}^{\prime}=180 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t n}=0.65 \mathrm{~V},\left|\partial L / \partial V_{D S}\right|_{n}=0.03 \mu \mathrm{~m} / \mathrm{V}$
- Parameters for PMOS transistors: $k_{p}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t p}=-0.6 \mathrm{~V},\left|\partial L / \partial V_{D S}\right|_{p}=0.04 \mu \mathrm{~m} / \mathrm{V}$

1. Find the region of operation and calculate the bias points $\left(I_{D}, V_{D S}\right)$ of M_{1} and M_{2}. In the circuit of the figure, $R_{1}=40.4 \mathrm{k} \Omega, R_{2}=59.6 \mathrm{k} \Omega, V_{D D}=5 \mathrm{~V},(\mathrm{~W} / L)_{1}=6$ and $(W / L)_{2}=18$. Neglect channel-length modulation.

2. In the circuit below, $(W / L)=(20 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m})$. and $R_{D}=10 \mathrm{k} \Omega$. Neglect channel-length modulation except for the last question.
(a) Derive an analytic expression for v_{O} as a function of v_{l}. You may need a sectionally-defined function to consider the different regions of operation.
(b) Sketch a plot v_{O} as a function of v_{I}. If this circuit is used as an amplifier, for what value of v_{l} the gain is maximum? Justify your answer.
(c) Calculate the value of the maximum gain.
(d) Calculate Δv_{O} if $\Delta v_{l}=-5 \mathrm{mV}$ when the circuit is biased at the point of maximum gain.
(e) Use small-signal analysis to recalculate the maximum gain considering channel-length modulation.

