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Abstract

This paper reports a new method for transient analysis of nonlinear

circuits based on nonlinear device state variables and waves at their ports.

The method is based on relaxation and thus does not require large ma-

trix decompositions if time step is constant. The use of waves results in

guaranteed convergence for any linear passive circuit and some types of

nonlinear circuits. Additionally, the formulation using waves ensures that

nonlinear devices are always excited with a physically meaningful input,

i.e., the amount of power transmitted to nonlinear devices is bounded.

The method was implemented in the fREEDATM circuit simulator. The

formulation, its properties and a convergence analysis of the proposed

method are presented first, followed by case studies.

keywords: Transient Analysis, Waves, Scattering Matrix, Wave Digital Fil-
ters, Iterated Timing Analysis, State Variables, Fixed-point Iteration, Minimum
Polynomial Extrapolation.

1 Introduction

Circuit-level simulation of large circuits is a challenging task in terms of memory
and CPU time. Nonlinear circuit elements add more complexity due to the need
of solving a system of nonlinear algebraic equations. It is thus of great interest to
find efficient simulation methods. One advantage of transient analysis compared
to other techniques is its capability to handle very strong nonlinearities of large
circuits. The fact that small time steps can be used in time-domain integration
makes this analysis robust [1]. Thus transient analysis is a promising start to
evaluate the ideas presented here. The transient analysis formulation presented
in this work is based on fixed-point iterations of waves at the ports of nonlinear
devices. The greatest advantage of this approach compared to the traditional
fixed-point iteration approaches using voltages and currents is that the power
delivered to nonlinear devices at any iteration is bounded [2]. There is very
little work in the literature exploring this idea.

Previously waves have been used for transient simulation in the context of
wave digital filters (WDF) [3]. WDF are discrete structures that mimic an
analog reference circuit. The reference circuit is not required to be a filter and
thus WDF theory can be applied to model any circuit. Equations are formulated
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in terms of wave quantities at the ports of each element in a circuit. The
interconnection of elements is represented by means of adaptors [4]. Nonlinear
devices (both algebraic and dynamic) can be modeled in terms of waves [5–
11]. For circuits with more than one nonlinear device port, delay-free loops
(DFLs) in the wave paths are likely to be formed [6]. DFLs prevent the direct
computation of waves in the circuit. Some approaches exist [10,11] to eliminate
DFLs created by multiple nonlinearities. Basically all nonlinear devices and
some interconnections are lumped in a sub-circuit and the reflections from its
ports are pre-computed given all possible combinations of incident waves. That
kind of approach is useful only when the number of nonlinear devices is small.
Reference [8] proposes a method to eliminate DFLs focused on circuits with
nonlinear inductors only. Fiedler et al. in [4] employed WDF theory applied
to the simulation of power electronic circuits. Nonlinear devices are treated as
switches in this work.

Traditional transient analysis formulations based on Newton’s method re-
quire the solution of a set of simultaneous linear equations. Matrix decomposi-
tion of a large Jacobian matrix is required at each Newton iteration. Fixed-point
(or relaxation) methods exploit the latency of the circuit by decoupling it into
smaller pieces and solving each piece independently [12]. Thus a matrix de-
composition per iteration is not required in these methods and they are more
suitable to be implemented in parallel computer systems to perform the numeri-
cal calculations concurrently. Different relaxation methods have been previously
proposed for circuit simulation [13–15,21], among those Iterated Timing Analy-
sis (ITA) and Waveform Relaxation (WR) are explored most. In ITA, relaxation
process is continued until convergence is achieved at each time point [13]. On the
other hand, WR is based on solving the decoupled sub-circuits independently
over an interval of time rather than for a single time point [12]. Some consider-
able research works have been performed for the parallel implementation of both
WR [22–24] and ITA [25, 26]. More recently a variant of waveform relaxation
(transverse waveform relaxation) have succesfully been applied to the parallel
simulation of coupled interconnects [16, 17]. Improved convergence of WR for
linear tightly coupled systems such as longitudinal partitioning of transmission
lines has also been recently reported [18,19]. In order to obtain convergence for
tightly coupled circuits, it is not enough to exchange just voltages between the
different circuit blocks, a combination of voltages and currents (or equivalent)
is needed [18–20]. These results suggest that a relaxation approach based on
waves, which can be seen as a combination of voltage and current in a port,
may have good convergence properties.

Circuit simulation using relaxation in the WDF context was explored in
References [6] and [2]. The approach in [2] allows nonlinear devices to be
modeled using voltages and currents, and thus it is more suitable for imple-
mentation in a circuit simulator. In this paper the method proposed in [2] is
further developed with parameterized nonlinear device models, implemented in
the fREEDATM [27] simulator and tested with a wider variety of circuits.

The main purpose of this work is to determine the feasibility of the re-
laxation approach based on waves applied to practical circuits and to further
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Figure 1: Network partition

study its convergence properties. A derivation of the relevant equations and
the iteration scheme is presented in Section 2. Section 3 analyzes convergence
properties. It is shown that the proposed approach is globally convergent for
linear passive circuits and at least locally convergent for some types of nonlinear
circuits. The effects of vector extrapolation methods to accelerate convergence
are investigated here for the first time. Simulation results for several circuits
are presented and discussed in Section 4.

2 Formulation

2.1 State-Variable Formulation

Equations are formulated following the state-variable approach [29] used in
fREEDATM. The circuit is partitioned in sources, linear and nonlinear parts
(Fig. 1). For each nonlinear element ports are defined with one terminal taken
as the reference. The linear network is assumed to be passive.

A circuit containing nonlinear elements is described by the time domain
MNA equation as follows:

Mu(t) +C
du(t)

dt
+

∫ t

0

Y(τ)u(t− τ)dτ + SNL(t) = Sf (t), (1)

where M, C and Y(t) are nu×nu matrices and u(t) is a vector with nu elements
consisting of nodal voltages plus additional variables. The M matrix contains
all conductors and frequency-independent MNAM stamps arising in the formu-
lation, C consists of capacitor and inductor values and other values that are
associated with dynamic elements and Y(t) is a matrix containing the impulse
response of all distributed linear networks. For causal networks Y(t) = 0 for
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t < 0. The Sf (t) vector contains the independent sources contributions and
SNL(t) contains the currents of the nonlinear devices.

The nonlinear subnetwork is described by the following parametric equa-
tions [31]:

vNL(t) = v

(

x(t),
dx

dt
, . . . ,

dmx

dtm
,xD(t)

)

(2)

iNL(t) = i

(

x(t),
dx

dt
, . . . ,

dmx

dtm
,xD(t)

)

(3)

where vNL(t), iNL(t) are vectors of voltages and currents at the ports of the
nonlinear network, x(t) is a vector of state variables and xD(t) is a vector of
time-delayed state variables, i.e., (xD)i(t) = xi(t − τi). All vectors in Eqs.
(2) and (3) have the same size equal to the number of ports of the nonlinear
network (ns). We will adopt the passive convention for voltages and currents
at the nonlinear device ports.

The connectivity information between the linear and nonlinear subnetwork
is given by a sparse incidence matrix (T) of size nu × ns:

vNL(t) = Tu(t) , (4)

SNL(t) = TT iNL(t) . (5)

For simplicity, in this derivation du(t)/dt will be approximated using the
Backward Euler (BE) rule,

du(t)

dt
≈

1

h
(un − un−1) ,

with h being the time step size, assumed to be constant, n the time step number
and un = u(tn). This derivation is very similar [29] when using other integration
methods such as the Trapezoidal method. The state variable vector (x) is
discretized in a similar way.

Applying the BE method and discrete convolution, Eqs. (1) and (5) are
combined:

Aun = Sf,n −TT iNL(xn,xn−1, . . . ) +
1

h
Cun−1 −

∞
∑

l=1

Ylun−l (6)

A = G+
1

h
C+Y0 , (7)

where Yl = Y(tl) and Y0 = Y(0). Solving for un in Eq. (6) and combining
with Eq. (4) the following error function is obtained:

ssv,n −MsviNL(xn,xn−1, . . . )− vNL(xn,xn−1, . . . ) = 0 , (8)

with

ssv,n = TA−1

(

Sf,n +
1

h
Cun−1 −

∞
∑

l=1

Ylun−l

)

Msv = TA−1TT .
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Note that Msv is constant and ssv,n depends only on quantities that are known
at the nth time step. The size of the algebraic system of nonlinear equations
(8) is ns × ns. For microwave circuits ns is often much smaller than nu.

2.2 Formulation in Terms of Waves

For each nonlinear port, we now adopt an arbitrary reference resistance, Rj

with j the port number. In this work, the incident and reflected waves at Port j
(aj and bj , respectively) are defined as follows,

aj =
vj +Rjij

2
√

Rj

, bj =
vj −Rjij

2
√

Rj

,

where vj and ij are the instantaneous values of the voltage and current at the
port. Note that the instantaneous power flow to the nonlinear device in Port j
is equal to (a2 − b2). These waves are known as power waves [3] in the WDF
literature and they are a special case of Kurokawa’s [32] power waves if Rj

is thought as the resistance of a generator driving the nonlinear port. These
waves can also be thought as travelling waves in imaginary zero-length lossless
transmission lines with a characteristic impedance equal to Rj , as shown in
Fig. 1.

The voltage and current at Port j can be expressed as

vj =
√

Rj(aj + bj) ,

ij =
(aj − bj)
√

Rj

.

Thus voltage and current vectors corresponding to all nonlinear device ports are
related to the wave vectors (a and b) as follows:

vNL = D(a+ b) , (9)

iNL = D−1(a− b) , (10)

where D is a diagonal matrix with the square root of reference port resistances.
The proposed relaxation method is based on propagating reflections of waves

between the linear and nonlinear subnetworks. Assume an initial vector of
reflected waves (bk

n) is known, where k denotes the iteration number. The
corresponding waves sent by the linear network (ak+1

n ) can be calculated by
replacing Eqs. (9) and (10) in Eq. (8),

ak+1
n = Sbk

n + a0,n , (11)

with

S = [MsvD
−1 +D]−1[MsvD

−1 −D] , (12)

a0,n = −[MsvD
−1 +D]−1ssv,n , (13)
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here, S is the scattering matrix of the linear network and a0,n is the source
contribution to the incident waves. If Msv exists then the inverse of [MsvD

−1+
D] must also exist.

Wave equations for the nonlinear device side are derived next. Under certain
conditions [5,7,9], the effect of nonlinear devices can be expressed as a nonlinear
vector function F( ),

bk+1
n = F(ak+1

n ) . (14)

Equation (14) in general is not explicitly available in circuit simulators. The
approach adopted here is to use Newton’s method at the nonlinear device level
to solve for bk+1

n . Rearranging Eqs. (9) and (10) we obtain the Fv( ) and Fi( )
error functions:

Fv(x
k+1
n ,bk+1

n ) = D−1vNL(x
k+1
n )− ak+1

n − bk+1
n , (15)

Fi(x
k+1
n ,bk+1

n ) = DiNL(x
k+1
n )− ak+1

n + bk+1
n , (16)

which must be equal to zero. The number of equations and unknowns is 2ns.
The unknowns are vectors bk+1

n and xk+1
n as the vector of incident waves, ak+1

n

is known from Eq. (11). Note that this system of equations is decoupled for each
nonlinear device, thus the Jacobian matrices arising from it are block-diagonal
with small diagonal blocks, typically no more than 6 × 6 elements. The good
numerical properties given by the parametric formulation of the nonlinear device
equations [29] are retained (at the expense of having to solve for xk+1

n ). The
updates from each Newton iteration are calculated as follows

∆x = [DJI +D−1JV ]
−1(−Fi − Fv) ,

∆b = −Fi −DJI∆x ,

Here JI and JV are the block-diagonal Jacobian Matrices of vNL and iNL,
respectively, which are explicitly available in fREEDATM, ∆x and ∆b are the
updates of state variables and reflected waves at each Newton iteration. Most
of the time only a few iterations (often only one) are required to reach an
acceptable tolerance, as it is shown in Section 4.

The fixed-point scheme is summarized by combining Eqs. (14) and (11):

bk+1
n = F(Sbk

n + a0,n) . (17)

Note that x is only required at the nonlinear device level (Equations (15) and
(16)) and is not required in the main loop (Eq. (17)).

3 Convergence Analysis

3.1 Bound on Wave Power

Although the formulation is different, Eq. (17) has the same form as Eq. (6) in

Ref. [2]. The total reflected power at each iteration is given by |bk+1
n |

2
, where

the bars denote the Euclidean Norm, and is bounded by [2]

|bk+1
n |

2
< Pmax + L|Sbk

n + a0,n|
2

(18)
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where L is a scalar, 0 < L < 1 for passive nonlinear devices and Pmax is a bound
on the maximum average power that can be delivered from the nonlinear devices
to the linear network during one time step and is given by Pmax = EA/h, where
EA is the total energy stored in nonlinear capacitors and inductors and h is
the time step size. If this upper bound is propagated from the first iteration, it
follows that

lim
k→∞

|bk+1
n |

2
<

1

1− L
(Pmax + L|a0,n|

2
) . (19)

This property, which is a consequence of iterating waves, is useful because it
ensures that iterations can never diverge to infinity and device models always
have a physically meaningful excitation. If iterations are not convergent, steady-
state oscillations in the error function are observed.

3.2 Local Convergence Analysis

Conditions for local convergence will be derived in the following. By performing
a Taylor expansion around the solution of Eq. (17) (assumed here to be bs) and
discarding higher-order terms, the following equation is obtained:

bn ≈ bs + JfS (bn − bs) , (20)

where Jf is the Jacobian matrix of F( ) in Eq. (17) and represents the small-
signal scattering matrix of the nonlinear network. Jf is a block-diagonal matrix
since JI and JV are block-diagonal. Assume that iterations are started at
bs + ξ0, with ξ0 being an initial perturbation or error vector. Then the error at
iteration k + 1 (ξk+1) is given by

ξk+1 = JfSξk , (21)

The square of the 2-norm of ξk+1 is then

|ξk+1|
2 = ξTk [STJT

f JfS] ξk ,

where JT
f denotes the transpose of Jf . One sufficient condition for local conver-

gence is that JfS corresponds to a passive network. In that case, the spectral
radius [33] of [STJT

f JfS] is less than one and [I−STJT
f JfS] is a positive semidef-

inite matrix [36] (I is the corresponding identity matrix). Thus |ξk+1|
2 decreases

with k and iterations converge to the solution. S corresponds to a passive net-
work, thus the proposed approach is always convergent for any circuit where
nonlinear devices are locally passive (as defined in [34]). Rectifying diodes are
locally passive. Unfortunately transistors may not be locally passive depending
on the biasing point. Note that it is straightforward to extend this analysis for
linear passive circuits. In that case convergence is guaranteed and global.

It is interesting to note that this convergence analysis is also valid for other
circuit partitions. For example, a more efficient partition for very large cir-
cuits [35] is shown in Fig. 2. A sufficient condition for convergence in that case
is that each of the nonlinear subcircuit blocks is locally passive.
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Figure 2: An alternate circuit partitioning

For nonconvergent circuits, it is possible to obtain convergence by reducing
the time step size. All real nonlinear devices have internal parasitic capacitors
in parallel with their ports. After time discretization, capacitors appear as
conductances and have the effect of “passivizing” the nonlinear devices. The
conductance is inversely proportional to the time step. It is always possible to
reduce the time step until all devices become locally passive (a similar reasoning
can be made with parasitic inductors in series). This result presented here is
somewhat similar to the “capacitor to ground” condition for Iterated Timing
Analysis and Waveform Relaxation methods [13]. However this approach is
often not practical as the required time step becomes too small.

3.3 Convergence Acceleration

It is shown in Ref. [13] that when convergent, relaxation methods usually con-
verge linearly as opposed to quadratic convergence rate with Newton’s method.
In the current implementation, a vector extrapolation method called Minimum
Polynomial Extrapolation (MPE) [28] is applied to the vector sequence gen-
erated by Eq. (17) to accelerate the convergence rate. Assume here that the
vector sequence is convergent to a fixed point. MPE is based on the differences
of the vectors in the sequence. Define the following difference vector,

uk
n = ∆bk

n = bk+1
n − bk

n

For a fixed integer K (usually K << ns)we can define a ns ×K matrix whose
columns are the vectors of differences:

U ≡ UK =
[

u0
n, u

1
n, . . . , u

K−1
n

]

. (22)

Now a vector qn = [q0n, q
1
n, . . . , q

K−1
n ]T is defined as follows:

qn = −U+uK
n , (23)
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where U+ is the pseudoinverse (or Moore-Penrose generalized inverse [42]) of
U. The computation of qn requires the decomposition of K ×K matrix. The
extrapolated vector bP

n is given by Theorem 1 in [28].

bP
n =

K
∑

k=0

qknb
k
n

(

K
∑

k=0

qkn

) . (24)

The number of vectors to use in the extrapolation (K) should be set equal
to the number of dominant eigenvalues of [JfS]. If K is chosen properly MPE
obtains the fixed point in one iteration for linear systems and converges quadrat-
ically for nonlinear systems, provided that the initial vector sequence is close to
the solution. If K is too small, the extrapolated vector still get closer to the
solution but convergence is slower [28]. Thus the combination of relaxation plus
extrapolation may have a convergence performance comparable to Newton’s
method. In the present implementation K is set as simulation parameter.

The computational cost of an extrapolation is roughly equivalent to the cost
of decomposing a square matrix of size K×K. For medium and large circuits K
is smaller than the number of nonlinear ports and this results in computational
savings. It is interesting (but of little practical use) to note that MPE converges
to the solution even if the original sequence is divergent [28], if the initial vector
sequence is close enough to the solution.

4 Simulation Results

The transient analysis based on waves has been implemented in the fREEDATM [27]
simulator (type:WaveTran). A simplified pseudo-code for the WaveTran analy-
sis is presented in Algorithm 1. Here, K is the number of vectors to extrapolate,
tol is the predefined tolerance, h is the time step size and tend is the simulation
end time. All those are set as simulation parameters in WaveTran.

The performance of the proposed analysis is compared with the previously
available state-variable transient analyses, types: Tran (uses a sparse-matrix
formulation, see [38]) and Tran2 (uses the formulation of Eq. (8), see [29]).
Results from Tran and Tran2 are assumed to be correct, as these analysis has
been previously verified against measurements and other circuit simulators [38,
40]. When possible, the times obtained with ngspice are also reported. Ngspice
timings are expected to differ with any of the other timings as ngspice uses an
adaptive time step algorithm, a different nonlinear model formulation and a
different program architecture, but the results are still included in the table to
be used as a well-known reference. The performance of the proposed method
for different circuits is summarized in Table 1, all simulations are performed in
Intel CoreTM i7 CPU 2.8 GHz computer using fixed time step and the same
absolute tolerance equal to 10−8.
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Algorithm 1 Transient Analysis based Fixed-Point iterations of Waves

calculate Msv

calculate S using Eq. (12)
repeat

initial guess is set to the results in previous step
update ssv,n
calculate a0,n using Eq. (13)
repeat

apply Eq. (17) for K iterations
calculate bP

n using Eq. (24)
replace b by bP

n

until (error ≤ tol)
increase time, t = t+ h

until (t < tend)

Table 1: Summary of simulation results

Circuit 1. 2. 3. 4. 5. 6.

MESFET MMIC Colpitts Soliton Multi-MMIC Power-Combiner

[37] (Fig. 3) [39] (Fig. 4) (Fig. 5) (Fig. 6)

Nonlinear ports
(ns)

3 4 3 47 255 700

MNAM Size 17 555 7 2017 12860 21682

Reference Port
resistance (Ω)

200 50 50 440 50 50

Input Power
Level (dBm)

7 -13 - 30 19 6.5

Time Steps 200 1000 7500 5000 4000 1000

Iterations
(WT-plain)

29 15 45 6 33 34

Iterations (WT) 12 7 10 5 13 12

K 4 4 4 2 4 6

Avg. extrap. 1.74 0.99 1.34 0.99 1.98 0.99

Newton Iter. 1.16 0.99 0.99 1.09 1.00 0.99

Simulation time
(WT-Plain) s

0.2 1.65 23.8 55.76 1676.83 1932.47

Simulation time
(WT) s

0.12 1.17 8.16 51.67 734.93 805.33

Simulation time
(Tran) s

0.03 3 1 106 4060 1907

Simulation time
(Tran2) s

0.02 0.41 0.74 30.39 1576 997.01

Simulation time
(ngspice) s

0.14 31.69
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Circuit 1 is a single MESFET amplifier without thermal connection (Fig. 13
in [37]) and Circuit 2 (Fig. 3) is a model of the Filtronics LMA 411 X-band
MMIC low noise amplifier (LNA) [38]. Circuit 3 is a Colpitts oscillator [39].
Circuit 4 (Fig. 4) is a nonlinear transmission line, or soliton line [40], composed
of 47 diodes and 48 lossy transmission lines. Circuit 5 is shown in Fig. 5 and
is composed of 5 MMIC LNA each connected to a soliton line (Circuit 4) at
the output stage, each LNA fed with a different input frequency. Circuit 6 is
an X-band MMIC array spacial power combiner [43]. Each HEMT finger is
modelled independently in this circuit, therefore each amplifier contributes 28
state variables which results in 700 state variables for the complete circuit. The
electromagnetic structures in this circuit are modelled in time-domain using a
convolution approach as explained in Section 2. The Materka-Kacprzac Model
is used for the MESFET in Circuit 1, the Curtice Ettemberg Model is used
for the MESFETs in Circuit 2 and the Gummel-Poon model is for the BJT in
Circuit 3. Netlists for some of these circuits are available in [30]. Values in the
table are average per time step except Newton Iteration, this is the average value
per relaxation iteration and the term plain refer to WaveTran (WT) without
MPE. The reference resistance used for each simulation is shown in the table. In
the current implementation this value is the same for all ports. This value has
an effect in the convergence rate of the method, and the optimum convergence
value changes with the operating point of the circuit. A method to determine
the optimum value for each port has not been developed yet. The Input Power
Level row shows the AC power level of the input sources referred to 50 Ω in
all circuits except Circuit 6, which is referred to 20 Ω. The Iterations rows,
(WT and WT-plain) compare the number of iterations needed for WaveTran
with and without MPE. The last four rows compare the total running time
using WaveTran (plain and with extrapolations) with Tran, Tran2, the standard
state-variable transient analyses in fREEDATM and, where possible, results from
ngspice are also shown. It can be seen that in some cases extrapolations can
decrease simulation times significantly, specially when many iterations per time
step are required. For different circuits, all the simulated output voltages are
compared with that from Tran2 and some zoom in plots are presented in Figs. 7,
8, 9 and 10. As expected the results from both simulation methods agree.
Fig. 11 shows the convergence acceleration effect of MPE for Circuits 1 and 3.
The plots show the error for iterations at one representative time step. For all
simulations on average only one Newton iteration is necessary at the nonlinear
device level. The average number of Newton iterations is slightly less than 1
for some circuits. That is because sometimes during the fixed-point iterations
the stop criteria for the Newton method is satisfied by the initial guess and
thus the Newton update is not performed. Thus the computational cost of
using Newton’s method to obtain reflected waves from nonlinear device models
formulated in terms of voltages and currents is not too expensive.

It can be observed that for the circuits considered here Tran2 is faster than
Tran even when Tran should scale better for large circuits due to the sparse
formulation. The main reason for this is the efficiency gain of the matrix reduc-
tion approach (Eq. (8)) for circuits with many linear parasitics and relatively
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Figure 3: X-band MMIC LNA (LMA 411)

Figure 4: Nonlinear transimission line (soliton line)
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Figure 5: Multi MMIC-Soliton-line schematic
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Figure 11: Comparison of errors for a single MESFET circuit and Colpitts
Oscillator

few nonlinear ports, as it can be seen by comparing the Modified Nodal Ad-
mittance Matrix (MNAM) Size row and the Nonlinear Ports row. Taking this
into account to evaluate the performance of relaxation based on waves, Wave-
Tran should be compared with Tran2 as they share the same matrix reduction
approach. WaveTran is slower than Tran2 for the smaller sample circuits but
as the circuit size increases the method becomes more efficient. For Circuits 5
and 6 with 255 and 700 state variables, respectively, the proposed relaxation
method is more efficient than Tran2 formulation as it does not require large
matrix decompositions after S has been calculated.

5 Discussion and Future Research

A nonlinear transient analysis based on state variables and relaxation of waves
has been presented for the first time. The application of MPE extrapolation
to accelerate the convergence of this formulation was also reported here for the
first time. The method is always convergent for circuits with passive linear
and locally passive nonlinear devices. For circuits that contain mostly locally
passive nonlinear devices or transistors separated by important passive networks
the proposed method is often convergent. As the size of the circuit increases the
performance becomes better than with a regular state-variable-based transient
formulation.

Some issues that should be further investigated are a method to select opti-
mum reference resistance values for each port and a way to ensure convergence
in circuits with locally active nonlinear devices. As discussed in [2], the time
step can be made variable in the proposed approach at the expense of one ma-
trix decomposition (calculation of scattering matrix, S) each time the step size
is changed. For circuits that satisfy the convergence criteria, further research
will investigate any performance gains achieved by reformulating the method
using the alternate circuit partition (Fig. 2) and implementing a wave-based
waveform relaxation approach.
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