
 1

Physical resistor model – n subtype ResistorPhyN

Description:
This element implements a semiconductor resistor based on the n subtype of the Cadence
physical resistor model.
Form: resistorPhyN:<instance name> n0 n1 n2 <parameter list>

instance name is the model name
n0 is the positive element terminal (Terminal0),
n1 is the negative element terminal (Terminal1),
n2 is the substrate terminal (Terminal2).

Parameters:

Parameter Type Default value Required?
r: Resistance (ohms) DOUBLE 1E+9 no
coeff0: Constant term of conductance
polynomial

DOUBLE 1 no

coeff1: First order coefficient of
conductance polynomial

DOUBLE 0 no

coeff2: Second order coefficient of
conductance polynomial

DOUBLE 0 no

coeff3: Third order coefficient of
conductance polynomial

DOUBLE 0 no

coeff4: Fourth order coefficient of
conductance polynomial

DOUBLE 0 no

coeff5: Fifth order coefficient of
conductance polynomial

DOUBLE 0 no

polyarg: Polynomial model argument type BOOLEAN 1 (TRUE) no
tc1: Linear temperature coefficient of
resistor (1/C)

DOUBLE 0 no

tc2: Quadratic temperature coefficient of
resistor (1/C^2)

DOUBLE 0 no

tnom: Parameter measurement
temperature (K)

DOUBLE 300 no

Terminal0 Terminal1

Terminal2

 2

tdev: Device operating temperature (K) DOUBLE 300 no
is: Saturation current (A) DOUBLE 1E-14 no
n: Emission coefficient DOUBLE 1 no
ibv: Current magnitude at the reverse
breakdown voltage (A)

DOUBLE 1E-10 no

bv: Junction reverse breakdown voltage
(V)

DOUBLE 0 no

fc: Coefficient for forward-bias depletion
capacitance

DOUBLE 0.5 no

cj0: Zero-bias junction capacitance (F) DOUBLE 0 no
vj: Junction built-in potential (V) DOUBLE 1.0 no
m: Junction grading coefficient DOUBLE 0.5 no
tt: Transit time (s) DOUBLE 0 no
area: Diode area multiplier DOUBLE 1 no
rs: Diode series resistance (ohms) DOUBLE 0 no

Example:
resistorPhyN:r2 2 3 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002
coeff4=0.0
+ coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tnom=300.0 tdev=300.0 is=1E-14 n=1.0
+ ibv=1.0E-10 bv=0.0 fc=0.5 cj0=1.0E-10 vj=1.0 m=0.5 tt=0.0 area=1.0 rs=0.0

Model Documentation:

For polyarg=true:
 The controlling voltage for the resistance is:
 V = ((V(t0) – V(t2)) + (V(t1)-V(t2))) / 2
 and the resistance is:
 R(V) = r / (coeff0 + coeff1*V + coeff2*V2+coeff3*V3+coeff4*V4+coeff5*V5)

For polyarg=false:
 The controlling voltage for the resistance is:
 V = V(t0) - V(t1)
 and the resistance is:
 R(V) = r / (coeff0 + 1/2*coeff1*V + 1/3*coeff2*V2 + 1/4*coeff3*V3 +
 1/5*coeff4*V4 + 1/6*coeff5*V5)

Note that the code does not prevent a negative resistance value; care should be taken in
selecting coefficients to ensure that the resulting resistance is positive for all anticipated
values of the controlling voltage.

Resistance as a function of temperature is:
 R(tdev) = R(tnom) * (1 + tc1*(tdev-tnom) + tc2*(tdev-tnom)2)

 3

References:
This model is based on a description of the Cadence Spectre physical resistor model
found at http://www.uta.edu/ronc/cadence/ResistorModels.pdf. Code for diodes was
taken from SPDiode model written by Carlos E. Christoffersen.

Sample Netlist:

**** resistorPhyN transient characteristic ****

* This choice of conductance coefficients should result in positive resistor
* values for Vctrl down to about -5V for polyarg = true or false.

.tran2 tstop=4E-6 tstep=2E-8

res:r1 1 2 r = 1000.0
resistorPhyN:r2 2 3 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002
coeff4=0.0
+ coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tnom=300.0 tdev=300.0 is=1E-14 n=1.0
+ ibv=1.0E-10 bv=0.0 fc=0.5 cj0=1.0E-10 vj=1.0 m=0.5 tt=0.0 area=1.0 rs=0.0
res:r3 3 0 r = 1000.0
vpulse:vbias 1 0 v1=0 v2=-3.0 td=0 tr=0 tf=0 pw=1E-6 per=2E-6

.out write term 1 vt in "n_tran_vt1.out"
.out write term 2 vt in "n_tran_vt2.out"
.out write term 3 vt in "n_tran_vt3.out"

.end

Known Bugs:
None

Credits:
Name Affiliation Date Links
ECE718 Student NC State University May 2003 www.ncsu.edu

 4

Description of Model

The goal here was to write a semiconductor resistor model based on a description of the Cadence Spectre
physical resistor model. The Cadence physical resistor model consists of three subtypes: n, p, and poly.
Each was implemented in fREEDA as a separarate model: resistorPhyN, resistorPhyP, and
resistorPhyPoly. The poly subtype consists of a voltage-dependent resistor and a fixed capacitor between
each of the resistor terminals and the substrate. The n and p subtypes consist of a voltage-dependent
resistor and a diode between each of the resistor terminals and the substrate. For the n subtype, the diodes’
anodes are connected to the resistor, while in the p subtype, the diodes’ anodes are connected to the
substrate. These diodes include junction capacitance.

There are three subtypes for this model, n, p, and poly. Each is contained in a separate file. Subtype n is
called resistorPhyN, subtype p is called resistorPhyP, and subtype poly is called resistorPhyPoly. For all
three subtypes, the voltage-dependent resistance is determined by coefficients of a fifth-order conductance
polynomial and a nominal resistor value, which are model parameters. For the poly subtype, the fixed
capacitor value is a model parameter. For the n and p subtypes, a fixed capacitance is not included, but
junction capacitance is included in the diodes. Some items which are included in the Cadence model,
including noise and device size parameters, were left out of the fREEDA models.

Summary of Operation

For the poly subtype, parameterization is not necessary, and the state variables are terminal voltages and
their derivatives. Resistance is determined from the terminal voltages, then terminal currents are
calculated. The use of diodes in the n and p subtypes forces re-parameterization as in the SPDiode model.
In the n and p subtypes, diode voltages and currents are calculated first from the state variables. The
terminal voltages are then set to the diode voltage plus drop across the diode series resistance (or the
negative, for subtype p). From the terminal voltages, resistance is calculated, then terminal currents are
calculated.

Calculation of Resistor Value

The controlling voltage for the resistor value is selected with the polyarg parameter. In addition to
determining the controlling voltage, polyarg also determines how the resistance is calculated from the
controlling voltage.

 When polyarg is set to false (or “diff” in the documentation on which this model is based), the controlling
voltage for the resistance is the voltage across the resistor:
 V = V(t0) – V(t1).
and the current through the resistor is
 I(V) = (V / r) * (coeff0 + 1/2*coeff1*V + 1/3*coeff2*V2+...)

Though the document on which this model is based does not describe how the expression for current was
derived, it seems that for polyarg=false, R is defined as:
 R = dV / dI
so
 I = integral (dV / R(V))
 I = integral ((coeff0 + coeff1*V + coeff2*V2 + ...)*dV / r)
 I = (coeff0*V + 1/2*coeff1*V2 + 1/3*coeff2*V3 + ...) / r
 I = (V / R(inst)) * (coeff0 + 1 /2*coeff1*V + 1/3*coeff2*V2 + ...).

When polyarg is set to true (or “sum” in the documentation on which this model is based), the controlling
voltage for the resistance is the average voltage between the resistor terminals and the substrate.
 V = ((V(t0) – V(t2)) + (V(t1)-V(t2))) / 2.
When polyarg is set to true, current through the resistor is

 5

 I(V) = (V / R(inst)) * (coeff0 + coeff1*V + coeff2*V2+...)
Given the result above, it seems that for polyarg=true, R is defined as:
 R = V / I

It should be noted that there is no provision in the code to prevent a negative resistor value (depending on
the conductance polynomial coefficients, this can occur for some negative values of the controlling
voltage). Coefficients must be selected carefully to avoid negative resistor values for any anticipated value
of the controlling voltage.

Diodes

The code for the diodes was taken from the SPDiode model. The non-charge-conserving portion of the
code was used. For the poly subtype, parameterization is not necessary, and the state variables are terminal
voltages and their derivatives. Resistance is determined from the terminal voltages, then terminal currents
are calculated. The use of diodes in the n and p subtypes forces re-parameterization as in the SPDiode
model. In the n and p subtypes, diode voltages and currents are calculated first from the state variables.
The terminal voltages are then set to the diode voltage plus drop across the diode series resistance (or the
negative, for subtype p). From the terminal voltages, resistance is calculated, then terminal currents are
calculated.

Temperature effects

The phyres model was not implemented as a thermal model. However, a fixed device operating
temperature can be specified in the parameter list. The parameter tdev is the device operating temperature,
and tnom is the temperature at which device parameters are assumed to have been measured.

Resistance as a function of temperature is:
 R(tdev) = R(tnom) * (1 + tc1*(tdev-tnom) + tc2*(tdev-tnom)2)

For linear capacitance in the poly subtype, capacitance as a function of temperature is:
 C(tdev) = C(tnom) * (1 + tc1c*(tdev-tnom) + tc2c*(tdev-tnom)2)

For junction capacitance in the n and p subtypes, temperature coefficients are not used. Instead, any
changes in capacitance that occur over temperature are due to tdev being used in diode calculations.

