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Figure 1: DHLD — Double Heterojunction Laser Diode (Tucker model).

fREEDA Form: DHLD:〈instance name〉 n1 n2 n3 n3 〈parameter list〉
n1 is the electrical anode terminal

n2 is the electrical cathode or reference electrical

n3 is the optical terminal

n3 is the optical reference terminal

parameter list see table for parameter list

Parameter Table

Parameters Description Values Units
Rs series resistance 2 Ω
Re equivalent resistance due to carrier degeneracy 0.468 Ω
I01 equivalent Diode1 leakage current 2.54e-25 A
I02 equivalent Diode2 leakage current 18.13e-3 A
b current controlled current source gain 6.92 A−1

τns equivalent recombination Lifetime 2.25e-9 s
C0 diode zero-bias charge capacitance 10e-12 F
VD junction built-in potential 1.65 V
D constant relating the radiative recombination

current per unit volume to the optical gain 1.79e-29 V−1A−1m6

a fraction of equivalent recombination lifetime
over low-level injection spontaneous
recombination lifetime 0.125 -

Rp equivalent optical resistor 29.4 Ω
Cp equivalent optical capacitor 0.102e-12 F
Sc photon density normalization constant 1e21 m−3

β fraction of spontaneous emission coupled
into the lasing mode 1e-3 -
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Figure 2: Double-heterostructure laser. The p-GaAs active layer is usually less than 0.5 μm thick. After [14,
15].

The DHLD consists of a p-type GaAs active layer of thickness d sandwiched between n-type and p-type
layers of higher bangap material as shown in Fig. 2. The circuit model for the DHLD is shown in Fig. 3.
It is similar in many ways to the structure described in [11]. The laser diode model is based on the Tucker
large-signal circuit model [12, 13]. It is derived from the physics of the heterojunction and explicitly takes
into account the effect of carrier degeneracy, high level injection, and nonradiative recombination. The
modulation response is determined through the rate equations of the device’s electro-optical dynamics. The
model is described in Chapter 3 of Reference [1].

Analysis
Under the assumption that the thickness d of the active layer is small compared to the carrier diffusion
length and that the variation of carrier densities with position in the active layer is small enough [12], the
carrier densities can be represented by average values. Then the average total electron density N in the
active layer is given by

N = N0 + n (1)

where N0 is the equilibrium electron density and n is the excess electron density. Corresponding notation
can be used for hole densities.

From the physics of the Heterostructure1 lasers [11, 12], and under the above assumptions, the total
radiative spontaneous recombination rate R in the active layer is given by:

R = BNP (2)

where B is a constant and P is the average total hole density in the active layer [12]. To obtain the diode cur-
rent due to spontaneous radiative recombination, we define the excess spontaneous radiative recombination
rate re as:

re = n/τs + B1n
2 (3)

where τs is the low-level injection spontaneous recombination lifetime and B1 is a constant defined in [12].
Also, a significant contribution to the diode current arises from nonradiative recombination rate rn along

the strip edges and at the heterointerfaces. Following the analysis in [11], it is assumed here that the
nonradiative recombination rate is proportional to n, and is characterized by a lifetime τn. Then the total
excess recombination rate rt (including radiative and nonradiative components) is obtained by adding the
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nonradiative recombination rate rn = n/τn to re:

rt = (1/τn + 1/τs)n + B1n
2 . (4)

Again, since the active layer is assumed to be thin, the diode recombination current is obtained by
multiplying rt by the active layer volume va and the electron charge q. Adding to it the displacement-
current term, we obtain the diode terminal current below threshold I:

I = qva

(
rt +

dn

dt

)
. (5)

Note that Eqn. 5 does not include the effects of space-charge capacitance. Substituting Eqn. 4 in Eqn. 5
gives:

I = I1 + bI2
1 + τns

dI1

dt
(6)

where
I1 =

qvan

τns
(7)

b =
B1τ

2
ns

qva
(8)

and
τns = (τ−1

s + τ−1
n )−1 (9)

Current/Voltage characteristics
The diode junction voltage Vj can be expressed in terms of the electron density in the active layer as a three
series-connected voltage drops V1, V2, and V3. That is:

Vj = V1 + V2 + V3 (10)

and

V1 = VT ln(1 + n/N0) (11)
V2 = VT ln{1 + n/(NA + N0)} (12)

V3 = VT (α1 + α3)n (13)

where VT = kT/q is the thermal voltage, NA is the acceptor impurity concentration, and α1 and α2 are
constant defined in [12]. The first two of these elements represent a classical Shockley p-n junction diodes.
With Eqn. 7 substituted, Eqns. 11 and 12 become:

I1 = I01{exp(V1/VT ) − 1} (14)

and
I1 = I02{exp(V2/VT ) − 1} (15)

where I1 is the current through the two diodes and the two diode leakage currents are given by:

I01 = qvaN0/τns (16)

and
I02 = qva(NA + N0)/τns (17)

The third series-connected element is given by Eqn. 13. Substituting Eqn. 7 in Eqn. 13 gives

I1 = V3/Re (18)
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where
Re = (α1 + α3)N0VT /I01 . (19)

Rate Equations

As mentioned earlier, the excess spontaneous recombination rate per unit volume rt can be written as the
sum of two components rn and re:

rt = rn + re (20)

Then, the total diode current due to spontaneous recombination is It = qvart, which can be written in the
form:

It = I1 + bI2
1 (21)

and the diode current due to radiative spontaneous recombination is Ie = qvare, which reduces to:

Ie = aI1 + bI2
1 (22)

where
a = τns/τs (23)

The single mode rate equations for an injection laser [13] can be written in the form

qva
dn

dt
= I − It − qvagS (24)

qva
dS

dt
= qvagS − Sqva

τp
+ βIe (25)

where I is the diode terminal current, g is the optical gain, S is the photon density in the active layer,
τp is the photon lifetime, and β is the fraction of spontaneous emission coupled into the lasing mode.
Eqn. 24 describes electron-injection and charge-storage effects in the active layer, and Eqn. 25 describes the
corresponding injection and storage dynamics of photons. These equations form the basis of the equivalent
large signal model. To account for the space-charge storage in the heterojunction layer, Eqn. 24 is generalized
to include space-charge capacitance term. Note that this effect is taken into account by a capacitor Cs and is
different from the charge-storage effect taken into account by the term τnsdI1/dt. Also, a normalized photon
density Sn is introduced to obtain better numerical values. With the above modifications, and substituting
Eqns. 21 and 22, the rate equations become:

I = I1 + bI2
1 + τns

dI1

dt
+ Cs

dV j

dt
+ GSn (26)

GSn + β(aI1 + bI2
1 ) =

Sn

Rp
+ Cp

dSn

dt
(27)

where Cs = C0(1 − Vj/VD)−1/2 is the space-charge capacitance, VJ is the heterojunction voltage, C0 is the
zero bias space-charge capacitance, VD is the diode built-in potential, CP = qvaSc, G = gCp, Rp = τp/Cp,
and Sn = S/Sc, where Sc is the photon-density normalization constant.

Equivalent Large-signal Circuit Model

The large-signal circuit model of the injection laser follows from the rate equations, Eqns. 26 and 27, and
from the current/voltage characteristics of the diode. The electrical equivalent model is shown to the left
of the vertical broken line in Fig. 3. It is important to note that the resistance Re in series with the two
Shockley diodes arises from carrier degeneracy, and is not associated with the ohmic regions of the diode.
Those regions are modelled by a series resistance Rs which includes contributions from lead resistance,
bulk resistance in the high-bandgap materials, and the effective resistance of the near-ohmic p-P isotype
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Figure 3: Large-signal two port circuit model of injection laser

heterojunction. The resulting equivalent circuit model of the photon dynamics is shown to the right of the
vertical broken line in Fig. 3 and is derived from Eqn. 27. where

Isp = β(aI2
1 + bI2

1 ) (28)

and
Ig = GSn . (29)

Diode Parameters
The laser parameters used in the simulations are the same as the ones used in [12, 13], and are similar to the
parameters used in [11]. The excess electron density in the active layer is assumed to be ns = 1.5×1018 cm−3,
and the factor qva is taken as 1.02×10−25 mA cm3 s. Thus the threshold current It is approximately 100 mA.
The active layer doping density is taken as NA = 4 × 1017 cm−3, and the photon lifetime is τp = 3.0 ps.

It is also assumed that the optical gain function G has a square-law dependence on the radiative recom-
bination current per unit volume Jnom as described in [14]

G = D(Jnom − 2 × 1013)2 (30)

where D is a constant and Jnom = Ie/va A/m3.A numerical value of D can be obtained by first determining
Sn0, the steady-state normalized photon density, and then setting it to infinity at saturation, that is when
n = ns. The steady-state photon density is obtained by subsrituting dSn/dt = 0 in Eqn. 27

Sn0 =
β(aI10 + bI2

10)
1/Rp − G

(31)

where I10 is the steady-state value of I1. As we can see, Sn0 goes to infinity when G = 1/Rp which, when
substituted in Eqn. 30, yields

D = R−1
p (Jnoms − 2 × 1013)−2 (32)

where Jnoms is the value of Jnom at saturation, and is given by

Jnoms =
qns

τns
(a + b

qvans

τns
) (33)

with the known diode parameters substituted in Eqns. 33 and 30, we obtain Jnoms = 6.359 × 1013 and
D = 1.79 × 10−29 V−1 A−1 m6. Numerical values of other parameters of the circuit model are listed in
Table ??.
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Implementation

The key to the implementation of the model is to consider the voltage on one of the diodes in Fig. 3 as the
first state variable, V1 for example, and the normalized photon density Sn as the second state variable, and
then write the model equations as a function of these two state variables and there derivatives, i.e. dV1/dt
and dSn/dt .

The relation between the drive input voltage V and current I is given by:

V = IRs + Vj (34)

where I can be expressed as:

I = I1 + bI2
1 + τns

dI1

dt
+ Cs

dVj

dt
+ Ig (35)

To write Eqns. 34 and 35 in terms of the state variables and there derivatives, we need to find I1, dI1/dt, Vj ,
and dVj/dt in terms of these state variables. From Eqn. 14, we know that I1 = I01{exp (V1/VT ) − 1}, then

dI1

dt
=

I01

VT
exp(V1/VT )

dV1

dt
(36)

and Vj can be expressed as:
Vj = V1 + V2 + V3 (37)

where
V2 = VT ln(I1/I02 + 1) (38)

and
V3 = I1Re · (39)

We still have to write dVj/dt as a function of the state variables and their derivatives:

dVj

dt
=

dV1

dt
+

dV2

dt
+

dV3

dt
(40)

where from Eqn. 38, we have
dV2

dt
=

I01

I02
exp{ (V1 − V2)

VT
}dV1

dt
(41)

and from Eqn. 39, we have
dV3

dt
= Re

dI1

dt
. (42)

Finally, we have to find Ig as a function of the state variables. We know that Ig = GSn = D(Jnom − 2 ×
1013)2Sn, and that Jnom = Ie/va = (aI1 + bI2

1 )/va, then

Ig = D(
aI1 + bI2

1

va
− 2 × 1013)2Sn . (43)

Now that we have expressed the current I and voltage V at the electrical port of the diode as a function of
the state variables, we have to express the current and voltage at the optical port of the diode as a function of
those variables. The voltage at the optical port is chosen to be Sn, however, the current Isn has no meaning
and it is forced to be zero (Isn ≡ 0) by connecting an open circuit to the optical port. The model, however,
will not function properly unless the Eqn. 27 is satisfied. This is done by using the fact that Isn ≡ 0 and by
rewriting Eqn. 27 in the form1

Isn = GSn + β(aI1 + bI2
1 ) − Sn

Rp
− Cp

dSn

dt
(44)

1Another way to satisfy Eqn. 27 is to connect a 1 Ω resistor at the optical port and make use of the fact that Isn − Sn ≡ 0,
where Isn = RpGSn + Rpβ(aI1 + bI2

1 ) − RpCp
dSn
dt

. This implementation actually will not result in a singular matrix in
Harmonic-balance simulations and alleviate the need to use a large resistance instead of the open circuit in that case.
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One last thing we did not talk about above is parameterization or variable transformations. They both
refer to an algebraic transformation of the device equations that leads to a better convergence properties,
and enables universal device modeling. The parameterization employed here is the one suggested in [16]
and that converts the strong nonlinear current-voltage relationship of the diode to two smoother functions
of current and voltage as functions of the state-variable x. Specifically, V1 is not taken as the state variable
in the actual coding, and Eqn. 14 is parameterized as follows

I1 =
{

I01{exp(αx) − 1} if x ≤ Vpr

I01 exp(αVpr){1 + α(x − Vpr)} − I01 if x > Vpr
(45)

V1 =
{

x if x ≤ Vpr

Vpr + 1
α ln{1 + α(x − Vpr)} if x > Vpr

(46)

where α = 1/VT and Vpr plays the role of a free parameter chosen appropriately to optimize the performance
of the HB algorithm specifically. Experience shows [16] that Vpr = ln(1/αIs)/α results in excellent behavior
of the model in most practical situations. As shown in Fig. 4, 5, and 6, the strong nonlinearity between i &
v is converted to moderate nonlinearities between i & x and v & x, and the problem becomes well behaved.
Please refer to [10] and [17] for more information on universal device modeling, and how the same piece of
code is used in fREEDA with different simulation algorithms, i.e. HB, Transient, DC analysis, etc.

Figure 4: Relation between v and i in a diode.

Results
The following sections present the simulation results of the DHLD model. The diode is driven by an input
current pulse of finite rise and fall time. Graphs of the input terminal voltage and of the normalized photon
density are shown for different values of β and compared with HSPICE R©.

A Harmonic Balance analysis is performed on the implemented DHLD model. First, the model is driven
by a DC bias source and single tone sine wave. Plots of the input terminal voltage and of the normalized
photon density are shown and compared with fREEDA’s transient analysis and HSPICE R©. Second, the
model is driven by a DC bias source and two tone input sine waves. Plots of the optical output power
spectrum is presented. Also, the power ratio of the second harmonic to the fundamental P2f/Pf and of the
intermodulation distortion to the fundamental PIM3/Pf as a function of bias current are shown.

Transient Analysis
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Figure 5: Relation between x and i in a diode.

Figure 6: Relation between x and v in a diode.

8



1.5 2 2.5 3 3.5 4 4.5 5 5.5

1.752

1.753

1.754

1.755

1.756

1.757

1.758

Time t (ns)

T
er

m
in

al
 V

o
lt

ag
e 

(V
)

fREEDA
HSPICE

Figure 7: Transient analysis comparison of the terminal voltage

In the analysis and design of laser diode transmitter, it is very important to determine laser turn-on delay
and other switching and modulation characteristics especially for high-speed application where the switching
waveform is affect by the finite bandwidth of the drive circuits [12]. This is why transient simulation is very
important in the design of optoelectronic ICs.

The DHLD model is driven by a current pulse that has a peak value of 150 mA and a rise time of 0.1
ns and the simulations are presented for different values of β. The plots in Fig. 7 shows the input terminal
voltage versus time while the plots in Fig. 8 shows the normalized output photon density. As we can see, a
very small change in the input voltage correspond to a large ringing effect in the output power and this is
due to exponential current/voltage relationship of the diode. Also, Fig. 8 shows the laser turn-on delay.

As shown in all of the plots, there is excellent agreement between fREEDA and HSPICE R©.

Harmonic Balance

Fiber-optic microwave links have the potential to be used in a large number of applications such as cable
television systems and personal communication systems. That is why it is important to characterize the
behavior of the laser diode under direct microwave intensity modulation, and one of the most important
tools in the simulations of nonlinear models at microwave frequencies is Harmonic Balance.

The laser diode was connected to the parasitics and matching network as shown in Fig. 9 and harmonic
balance simulations with a single and two tone sine wave input were performed.

The intensity modulation response of a double heterojunction laser diode to an rf-input input power
of 7 dBm at 1 GHz at a bias current of 125 mA was simulated. The time domain results are shown in
Figs. 10 and 11 and compared to transient analysis. The calculated optical output power spectrum is shown
in Fig. 12, with the second harmonic being approximately 7.59 dBc.

Fig. 13 shows the power ratio of the second harmonic to the fundamental P2f/Pf as a function of the
bias current for an rf-input input power of 3 dBm at input frequency of 1 GHz. The threshold current of
this device is 100 mA.

Finally, Fig. 14 shows the power ratio of the third-order intermodulation products to the carrier PIM3/Pf
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Figure 8: Transient Analysis comparison of the light output

Figure 9: Parasitics and matching network used in HB simulation. After [18].
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Figure 10: Comparison of the input terminal voltage between HB analysis and transient analysis in fREEDA.
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Figure 11: Comparison of the output photon density between HB analysis and transient analysis in fREEDA.
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Figure 12: Large-signal intensity modulation response.
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Figure 14: Power ratio of third-order intermodulation products to carrier as a function of bias current.

as a function of the bias current. Equal inputs of -1 dBm at 1.0 GHz and 1.04 GHz were used. In general,
there is an improvement in linearity with increasing bias current.

As we can see, there is an excellent agreement in the single tone simulations between HB and transient
analysis except at the beginning with HB which truncates the transient response. In addition, the two tone
simulations shows a close agreement with the reported nonlinear distortion simulations in the literature [18,
19].
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