Biography of publications describing modeling and architecture in fREEDA

Global Modeling Concept

  1. C. E. Christoffersen, U. A. Mughal, and M. B. Steer, “Object oriented microwave circuit simulation,” Int. J. on RF and Microwave Computer Aided Engineering, Vol. 10, Issue 3, May/June 2000, pp. 164–182.
  2. C. E. Christoffersen and M. B. Steer, “Implementation of the local reference node concept for spatially distributed circuits,” Int. J. on RF and Microwave Computer Aided Engineering, Vol. 9, No. 5, Sept. 1999, pp. 376–384.
  3. M. B. Steer, J. F. Harvey, J. W. Mink, M. N. Abdulla, C. E. Christoffersen, H. M. Gutierrez, P. L. Heron, C. W. Hicks, A. I. Khalil, U. A. Mughal, S. Nakazawa, T. W. Nuteson, J. Patwardhan, S. G. Skaggs, M. A. Summers, S. Wang, and A. B. Yakovlev, “Global modeling of spatially distributed microwave and millimeter-wave systems,” IEEE Trans. Microwave Theory Techniques, June 1999, pp. 830–839.
  4. M. B. Steer, J. W. Bandler and C. M. Snowden, “Computer-aided design of RF and microwave circuits and systems,” IEEE Trans. Microwave Theory Techniques, Mar. 2002, pp. 996–1005.
  5. A. I. Khalil and M. B. Steer, “Circuit theory for spatially distributed microwave circuits,” IEEE Trans. On Microwave Theory and Techniques, vol. 46, Oct. 1998, pp. 1500-1502.
  6. M. B. Steer, N. M. Kriplani, S. Luniya, F. Hart, J. Lowry and C. E. Christoffersen, “fREEDA: an open source circuit simulator,” Proc. 2006 Workshop on Integrated Nonlinear Microwave and Millimeter-wave Circuits, Jan. 2006.
  7. C. E. Christoffersen and M. B. Steer, “Generalized circuit formulation for the transient simulation of circuits using wavelet, convolution and time-marching techniques,” ECCTD, Nov. 2001.
  8. H. Gutierrez, C. E. Christoffersen and M. B. Steer, “An integrated environment for the simulation of electrical, thermal and electromagnetic interactions in high-performance integrated circuits,” Proc. IEEE 6 th Topical Meeting on Electrical Performance of Electronic Packaging,, Sept. 1999, pp. 217–220.
  9. M. B. Steer, C. E. Christoffersen, H. Gutierrez, S. Nakazawa, M. Abdulla, and T. W. Nutesson, “Modelling of Large Non-Linear Systems Integrating Thermal and Electromagnetic Models,” European Gallium Arsenide and related III-V Compounds Application Symposium, Oct. 1998, pp. 169–174.
  10. M. B. Steer, M. Ozkar, and C. E. Christoffersen, “Circuit level modelling of spatially distributed mm and sub mm-Wave Systems,” Proc. 1998 IEEE Sixth Int. Conf. on Terahertz Electronics Proceedings, Sept. 1998, pp. 21–24.
  11. M. B. Steer, M. N. Abdulla, C. Christoffersen, M. Summers, S. Nakazawa, A. Khalil, and J. Harvey, “Integrated electro-magnetic and circuit modeling of large microwave and millimeter-wave structures,” Proc. 1998 IEEE Antennas and Propagation Symp., June 1998, pp 478–481.
  12. M. S. Basel, M. B. Steer, and P. D. Franzon, “Hierarchical simulation of high speed digital interconnects using a packaging simulator,” Proc. 44 rd Electronic Components and Technology Conf., May 1994, pp. 81–87.
  13. Carlos Christofferson, Global Modeling of Nonlinear Microwave Circuits , Ph.D. Dissertation, North Carolina State University, 2000
  14. Steven G. Skaggs, Efficient Harmonic Balance Modeling of Large Microwave Circuits , Ph.D. Dissertation, North Carolina State University, 1999.
  15. Rajesh Bollapragada, An Integrated Tool for High Speed Circuit Design Including Substrate Effects , M.S. Thesis, North Carolina State University, 2003.
  16. Ramya Mohan, Integration of Interconnect Models in a Circuit Simulator , M.S. Thesis North Carolina State University, 2002
  17. Baribrata Biswas, Modeling and simulation of high speed interconnects , M.S. Thesis, North Carolina State University, 1998.
  18. Carlos Christoffersen, State-variable based steady state analysis of microwave circuits , M.S. Thesis, North Carolina State University, 1998.

Coupled EM-Circuit Modeling

  1. R. Mohan, J. C. Myoung, S. E. Mick, F. P. Hart, K. Chandrasekar, A. C. Cangellaris, P. D. Franzon and M. B. Steer, “Causal reduced-order modeling of distributed structures in a transient circuit simulator,” IEEE Trans. Microwave Theory and Tech, Vol. 52, No. 9, Sept. 2004, pp. 2207 – 2214.
  2. W. Batty, C. E. Christoffersen, A. B. Yakovlev, J. F. Whitaker, M. Ozkar, S. Ortiz, A. Mortazawi, R. Reano, K. Yang, L. P. B. Katehi, C. M. Snowden and M. B. Steer, "Global coupled EM-electrical-thermal simulation and experimental validation for a spatial power combining MMIC array,“IEEE Trans. Microwave Theory and Tech., Vol. 50, Dec. 2002, pp. 2820–2833.
  3. M. S. Basel, M. B. Steer and P. D. Franzon “Simulation of high speed interconnects using a convolution-based hierarchical packaging simulator,” IEEE Trans. on Components Hybrids and Manufacturing Technology, Part B: Advanced Packaging, Vol. 18, Feb. 1995, pp. 74–82.
  4. Ahmed I. Khalil, Generalized Scattering Matrix Modeling of Distributed Microwave and Millimeter-Wave Systems , Ph.D. Dissertation, North Carolina State University, 1999.
  5. Satoshi Nakazawa, Hierarchical Electromagnetic Modeling of Quasi-Optical Grid Amplifiers and Oscillators , M.S. Thesis, North Carolina State University, 1999.
  6. Usman Mughal, Hierarchical Approach to Global Modeling of Active Antenna Arrays , M.S. Thesis, North Carolina State University,  1999.
  7. Mark Summers, Simulation of a quasi-optical grid amplifier , M.S. Thesis, North Carolina State University, 1997.

Thermal Modeling

  1. S. Melamed, S. Luniya, L. E. Doxsee, Jr., K. Obermiller, C. Hawkinson, W. R. Davis, P. D. Franzon and M. B. Steer, “Thermal analysis and verification of a mounted monolithic integrated circuit,” IEEE Trans. Advanced Packaging, submitted March 2007.
  2. W. Batty, C. E. Christoffersen, A. B. Yakovlev, J. F. Whitaker, M. Ozkar, S. Ortiz, A. Mortazawi, R. Reano, K. Yang, L. P. B. Katehi, C. M. Snowden and M. B. Steer, "Global coupled EM-electrical-thermal simulation and experimental validation for a spatial power combining MMIC array,“IEEE Trans. Microwave Theory and Tech., Vol. 50, Dec. 2002, pp. 2820–2833.
  3. W. Batty, C. E. Christoffersen, A. J. Panks, S. David, C. M. Snowden and M. B. Steer, “Electrothermal CAD of power devices and circuits with fully physical time-dependent compact thermal modeling of complex non linear 3-d systems,” IEEE Transactions on Components and Packaging Technology, Dec. 2001, pp. 566–590.
  4. J. Ding, D. Linton, D. Smithand M. B. Steer, “Compact electro-thermal modelling and simulation of InP HBT based on the local reference concept,” The 1 st European Microwave Integrated Circuits Conference, Sept. 2006, pp. 383–386.
  5. S. Luniya, W. Batty, V. Caccamesi, M. Garcia, C. E. Christoffersen, S. Melamed, W. R. Davis and M. B. Steer, “Compact electrothermal modeling of an X-band MMIC,” 2006 IEEE MTT-S Int. Microwave Symp., June 2006.
  6. W. Batty, C. E. Christoffersen, A. B. Yakovlev, J. F. Whitaker, A. Mortazawi, A. Al-Zayed, M. Ozkar, S. Ortiz, R. Reano, K. Yang, L. P. B. Katehi, C. M. Snowden and M. B. Steer, “Electro-thermal simulation a complex design example: the spatial power combining MMIC array,” 6 th International Workshop on Thermal Investigations of ICs and Systems (Therminic), Oct. 2002.
  7. W. Batty, C. E. Christoffersen, A. B. Yakovlev, J. F. Whitaker, M. Ozkar, S. Ortiz, A. Mortazawi, R. Reano, K. Yang, L. P. B. Katehi, C. M. Snowden and M. B. Steer, " Global coupled EM-electrical-thermal simulation and experimental validation for a spatial power combining MMIC Array,” 2002 IEEE MTT-S Int. Microwave Symp., June 2002.
  8. W. Batty, C. E. Christoffersen, C. M. Snowden and M. B. Steer, “Fully physical coupled electro-thermal modelling of power devices and circuits,” 13 th Workshop on Physical Simulation of Semiconductor Devices, March 2002.
  9. W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B. Steer, “Fully analytical compact thermal model of complex electronic power devices and packages in coupled electrothermal CAD,” 7 th Int. Workshop on Thermal Investigations of ICs and Systems, Sept. 2001.
  10. W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden, and M. B. Steer, “Fully physical time-dependent compact thermal modelling of complex non linear 3-dimensional systems for device and circuit level electro-thermal CAD,” Seventeenth Annual IEEE Symp. On Semiconductor Thermal Measurement and Management, 2001. pp. 71–84.
  11. W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B. Steer, “Predictive microwave design by coupled electro-thermal simulation based on a fully physical thermal model,” 8th IEEE Int.l Symp. on Electron Devices for Microwave and Optoelectronic Applications, Nov. 2000.
  12. W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B. Steer, “Steady-state and transient electro-thermal simulation of power devices and circuits based on a fully physical thermal model,” 6 th Int. Workshop on Thermal Investigations of ICs and Systems (Therminic 2K), Sept. 2000, pp. 125 - 130.

Device Modeling and Parameterization

  1. N. M. Kriplani, S. Bowyer, J. Huckaby and M. B. Steer, “Modeling a tunnel diode in a circuit simulator,” IET Circuits, Devices & Systems, In Press, 2007.
  2. N. M. Kriplani, D. P. Nackashi, C. J. Amsinck, N. H. Di Spigna, M. B. Steer and P. D. Franzon, R. L. Rick, G. C. Solomon and J. R. Reimers, “Physics-based molecular device model in a transient circuit simulator,” Elsevier Science: Chemical Physics, July 11 2006, Vol. 326, Issue 1, Special Issue on The Molecules and Methods of Chemical, Biochemical and Nanoscale Electron Transfer, pp. 188–196.
  3. P. J. Rudge, R. E. Miles, M. B. Steer and C. M. Snowden, “Investigation into intermodulation distortion in HEMTs using a quasi-2D physical model,” IEEE Trans. Microwave Theory Techniques, Vol. 49, Dec. 2001, pp. 2315–2321.
  4. C. E. Christoffersen, S. Velu and M. B. Steer, “A universal parameterized nonlinear device model formulation for microwave circuit simulation,” 2002 IEEE MTT-S Int. Microwave Symp., June 2002.
  5. Senthil Velu, Charge Based Modeling In State Variable Based Simulator , M.S. Thesis, North Carolina State University, 2002.
  6. Nikhil Kriplani, Transistor Modeling using Advanced Circuit Simulator Technology , M.S. Thesis, North Carolina State University, 2002

Automatic Differentiation

  1. F. P. Hart, D. Stephenson, C.-R. Chang, K. Gharaibeh, R. G. Johnson and M. B. Steer, Mathematical foundations of frequency domain modeling of nonlinear circuits and systems using the arithmetic operator method, Int. J. on RF and Microwave Computer Aided Engineering, Dec. 2003, pp. 473–495.
  2. M. Steer, A. Mantooth, N. Kriplani and W. Jang, “Advanced device modeling using automatic differentiation in a mixed domain circuit simulator,” Proc. Int. Conf. on Mixed Design of Integrated Circuit and Systems, Gdynia, Poland, 22–24 June 2006.
  3. F. Hart, N. Kriplani; S. Luniya, C. Christoffersen and M. B. Steer “Streamlined Circuit Device Model Development with fREEDA and Adol-C,” AD 2004 — Fourth International Workshop on Automatic Differentiation, July 2004.
  4. F. P. Hart, N. Kriplani, S. R. Luniya, C. E. Christoffersen and M. B. Steer, “Streamlined Circuit and Device Model Development with fREEDA and ADOL-C,” in Automatic Differentiation: Applications, Theory, and Implementations, edited by H. M. Bucker, G. F. Corliss, P. Hovland, U. Naumann and B. Norris, Series: Lecture Notes in Computational Science and Engineering, Vol. 50, Springer, New York, NY, 2005.

Model, VCSEL (Laser Diode)

  1. R. Pant, M. A. Neifeld, M. B. Steer, H. Kanj, and A. C. Cangellaris, “Electrical package impact on VCSEL-based optical interconnects ;” Optics Communication, Vol. 245, Issue 1-6, Jan. 2005, p. 315-332.
  2. Houssam Kanj, Circuit-Level Modeling of Laser Diodes , M.S. Thesis, North Carolina State University, 2003

Filter Models and how to model and analyze high Q elements

1.   F. P. Hart, S. Luniya, J. Nath, A. Victor and M. B. Steer, “Modeling high-order filters synthesis in a transient microwave circuit simulator,” Proc. IEE Part H. Microwave Antennas and Propagation, In Press, 2007.

Analysis, Transient

  1. C. E. Christoffersen, S. Nakazawa, M. A. Summers and M. B. Steer, “Transient analysis of a spatial power combining amplifier,” 1999 IEEE MTT-S Int. Microwave Symp. Digest. June 1999, pp. 791–794.
  2. Mark Basel, Simulation of High Speed Digital Circuit Interconnection Networks , Ph.D., 1993.
  3. Sonali Luniya, SPICE Like Sparse Transient Analysis , M.S. Thesis, North Carolina State University, 2002
  4. Mete Ozkar, Transient Analysis of Spatially Distributed Microwave Circuits Using Convolution and State Variables , M.S. Thesis, North Carolina State University,, 1998
  5. Dan Winklestein, Transient Nonlinear Simulation of Transmission Line Systems , M.S. Thesis, North Carolina State University,, 1990.

Analysis, Transient, High Dynamic Range (.TRAN4)

  1. S. Luniya, K. G. Gard, and M. B. Steer, “Modeling nonlinear distortion of ultra wideband signals at X-band,” IEEE Microwave and Wireless Component Letters, July 2006, pp. 381–383.
  2. S. Luniya, M. B. Steer and C. E. Christoffersen, “High dynamic range transient simulation of microwave circuits IEEE Radio and Wireless Conf. (RAWCON), Sept. 2004.
  3. Sonali Luniya, Transient Electrothermal Modeling of Digital and Radio Frequency Circuits, Ph.D. Dissertation, North Carolina State University, 2006

Analysis, Transient, Wavelets  (.WAVTRAN)

  1. C. E. Christoffersen and M. B. Steer, `` State-variable-based transient circuit simulation using wavelets,'' IEEE Microwave and Guided Waves Letters, Vol. 11. April 2001, pp. 161–163.
  2. C. E. Christoffersen and M. B. Steer, “Comparison of wavelet- and time-marching-based microwave circuit transient analysis,” 2001 IEEE MTT-S Int. Microwave Symp. Digest. May 2001, pp. 447–450.

Analysis, Transient, Convolution

  1. C. Christoffersen, M. Ozkar, M. B. Steer, M. G. Case and M. Rodwell, “State variable-based transient analysis using convolution,” IEEE Trans. Microwave Theory Techniques, June 1999, pp. 882–889.
  2. D. Winkelstein, M. B. Steer and R. Pomerleau, “Simulation of arbitrary transmission line networks with nonlinear terminations,” IEEE Trans. on Circuits and Systems, April 1991, pp.418-422. See also, IEEE Trans. on Circuits and Systems, Vol. 38, Oct. 1991.

Analysis, Noise

1.      N. M. Kriplani, S. Luniya and M. B. Steer, “Integrated deterministic and stochastic simulation of electronic circuits: application to large signal noise analysis,” submitted to Int. J. Numerical Modeling, January 2007.

  1. M. Steer and N. Kriplani, “Stochastic simulation as an aid to uncertainty modeling of sensors: modeling phase noise in an oscillator,” Government Microcircuit Applications Conf. (GOMACTech), March 2007.
  2. N. M. Kriplani, A. Victor and M. B. Steer, “Time-domain modelling of phase noise in an oscillator,” 36 th European Microwave Conference, Sept. 2006, pp. 514–517.
  3. Nikhil Kriplani, Modelling Colored Noise under Large-Signal Conditions, Ph.D. Dissertation, North Carolina State University, 2005.

Model, Transistor

  1. J. Ding, D. Linton, D. Smithand M. B. Steer, “Compact electro-thermal modelling and simulation of InP HBT based on the local reference concept,” The 1 st European Microwave Integrated Circuits Conference, Sept. 2006, pp. 383–386.
  2. P. J. Rudge, R. E. Miles, M. B. Steer and C. M. Snowden, “Two-tone intermodulation distortion simulations in the time domain using a quasi-2D physical pHEMT model,” 2001 IEEE MTT-S Int. Microwave Symp. Digest. May 2001, pp. 439–442.

Harmonic Balance

  1. C. E. Christoffersen, M. B. Steer and M. A. Summers, “Harmonic balance analysis for systems with circuit-field interactions,” Proc. 1998 IEEE MTT-S International Microwave Symp., June 1998, pp. 1131–1134.
  2. Shunmin Wang, Efficient Harmonic Balance Analysis of Microwave Circuits Using Iterative Matrix Solvers and Newton Updating , M.S. Thesis, North Carolina State University, 1999