f REEDA™

Programmer’s Guide

Version 1.1.0

May 23, 2003

ii

Copyright (© by the respective authors identified throughout.

All rights reserved. Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced, stored in a data base or
retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the written permission without the permission of the publisher.

fREEDA™'is a trademark of Michael Steer and registration has been applied for.
SPICE2G6 is a trademark of U.C. Berkeley.

SPICE3 is a trademark of U.C. Berkeley.

PSPICE probe, parts, device equations and digital files are trademarks of Microsim Corp.
All other trademarks are the properties of their respective owners.

Information contained in this work is believed to be reliable and obtained from sources that are also believed to be reliable.
However, the authors do not guarantee the completeness or accuracy of any information contained herein and the authors
shall not be responsible for any errors, omissions, or damages arising out of use of this information. This work is published
with the understanding that the authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be sought.

Contents

1 fREEDA™ Architecture

1.1 Imtroduction
1.2 The Network Package
1.3 The Analysis Classes oo
1.4 Nonlinear Elements
1.5 Example: Use of Polymorphism
1.6 Contributors

2 Adding Linear Elements to fREEDA™

TM

2.1 The fREEDA " Circuit Simulator
2.2 Example: Adding a Linear Resistor
2.2.1 Netlist syntax e e
2.2.2 Class Name, Required Files, etc.
2.2.3 The Header File e
2.2.4 The Class Source File
2.2.5 Filling the Modified Nodal Admittance Matrix
2.2.6 Modifications to the rest of the FREEDA™ " Source Files
2.3 Template Files for New Linear Elements
2.3.1 Header File e
2.3.2 Class Source File e
2.4 Contributors e e e

3 Adding Nonlinear Elements to fREEDA™

3.1 The FREEDA™" Circuit Simulator
3.2 Example: Adding a Nonlinear Electro-Thermal Resistor
3.2.1 Netlist syntax L L
3.2.2 Class Name, Required Files, etc.
3.2.3 The Header File e e
3.2.4 The Class Source File
3.2.5 Using the cout routine for debugging
3.2.6 Modifications to the rest of the fREEDA™" Source Files
3.3 Template Files for new Nonlinear Elements
3.3.1 Header File e
3.3.2 Class Source File e
3.4 A Note on the Eval Routines in FREEDA™
3.4.1 Parameterized Device Models
3.5 Contributors e

A Object Oriented Programming Basics
A1l UML diagrams o o o e
A.1.1 Collaboration Diagrams
A.2 Contributors

21
21
21
22
22
23
25
35
35
35
35
37
38
38
40

B Release Notes

C Support Libraries
C.1 Solution of Sparse Linear Systems (Sparse, SuperLU)
C.2 Vectors and Matrices (MV++, MTL)

C.3 Solution of Nonlinear Systems (NNES)
C.4 Fourier Transform (FFTW)
C.5 Automatic Differentiation (Adol-C)
C.6 Contributors

Netlist Format
D.1 Structure of Transim’s Netlist

D.1.1
D.1.2
D.1.3
D.14
D.1.5
D.1.6
D.1.7
D.1.8

D.2.1
D.2.2
D23
D.24
D.2.,5
D.2.6
D.2.7
D.28

References

Continuation of line

Analysis Specification
Element Specification
D.1.9 End of netlist
D.1.10 Subcircuits
D.2 Output Control

Running a system command
Nomenclature

Network operators
Conventional arithmetic operators
D.3 Example: simulation of a folded slot antenna

CONTENTS

Chapter 1

fREEDA " Architecture

1.1 Introduction
The architecture of FREEDA™™is based on faithful application of object oriented (O0) design practice
[61-66] 1. The OO abstraction is well suited to modeling engineering systems, for example, in
circuit simulation circuit elements are already viewed as discrete objects and at the same time as an
integral part of a (circuit) continuum. The OO view is a unifying concept that maps extremely well
onto the way humans perceive the world around them. Non-OO circuit simulators always become
complicated with many layers of special cases. Referring to circuit elements again, traditional
simulation implementations have many “if-then” like statements and individually identify every
element in many places for special handling.

There are a few key premises that drove the architecture of FREEDA™™. One of these is the
adoption of a very strong OO paradigm throughout to obtain a modular design. A second key
premise is the separation of the core components embodying numerical methods from the modeling
and solver formulation process with the result that numerical techniques developed by computer
scientists and mathematicians can be formulated using formal correctness procedures. Thus, what
is adopted here, is that the circuit abstraction is adapted so that highly reliable and efficient pre-
developed libraries can be used.

C++ is the core implementation language and was once considered slow for scientific applications.
Advances in compilers and programming techniques, however, have made this language attractive
and in some benchmarks C++ outperforms Fortran [67,68]. Several OO numerical libraries have
been developed [69]. Of great importance to the work described here is the incorporation of the
standard template library (STL) [70]. The STL is a C++ library of container classes, algorithms,
and iterators; it provides many of the basic algorithms and data structures of computer science.
The STL is a generic library, meaning that its components are heavily parameterized: almost every
component in the STL is a template. The current ISO/ANSI C++ standard [71] has not been fully
implemented and C++ compilers support a variable subset of the standard. The biggest areas of
noncompliance being the templates and the standard library.

In this chapter the focus is on the design of the object-oriented structure of FREEDA™ . The
goal in the design of FREEDA™ was to obtain speed in development, to use ‘off-the-shelf’ advanced
numerical techniques, and to allow easy expansion and implementation of new models and numerical
methods.

The design intent was to to combine the advantages of previous OO circuit simulators with these
new developments as well as expanding capability. FREEDA™ uses C++ libraries [72,73] and several
written in C or Fortran [52,74,59].

0OO-design embodies a body of concepts that should be understood before a full appreciation of
what follows can be made. This fits in beautifully with the idea of code resue as here we utilize
concept reuse. The first concept required is an understanding of the Unified Markup Language

IThese references are available on line at http://www.objectmentor.com/

1

CHAPTER 1. FREEDA™ ARCHITECTURE

CircuitManager <<type>>

Instanciable

<<type>>
NetListltem

<<type>>
Circuit GraphNode

<<type>>
Terminal - - Element ‘—> ElementData

R
(resistor)

TerminalData

MesfetM

D '
Xsubckt (diode)

ElementManager

Figure 1.1: Class diagram: The network package is the core of the simulator.

(UML). This is a universal way of presenting relationships among objects and is not specific to
computer coding. UML can be viewed as a substitute for flowcharts. A flowchart permits a very
limited set of relationships to be described and results in what is called spaghetti code: code that has
many linear streams and complex connections between the threads. Common code is multiplicated
and perhaps slightly changed in each instance as the concept of using existing code and overriding
only the differences is not supported. UML is different and fosters code reuse and much simpler
coding. So if you are not familiar with UML study Appendix A before proceeding.

1.2 The Network Package

The network package is the core of the simulator. All the elements and the analysis classes are built
upon it as shown in the class diagram of Figure 1.1. R(resistor), D(diode) and MesfetM shown here
are examples of particular elements. Xsubckt is the SPICE X subcircuit element. The terminals of an
element are specifically referred to as terminals and not as nodes as used in SPICE as the concept of
a node is more general than that of a terminal. For example elements and terminals are both graph

1.2. THE NETWORK PACKAGE 3

NetListltem

+ getName()
* getDescription()

+ getAuthor()
* getNumberOfParams()

* getParamSpec()
+ askParamType()
+ getParamsFrom()
* setParam()

* isSet()

* checkParams()

* getParamDesc()

Figure 1.2: The NetListItem class.

nodes. (See Appendix A for a description of the class diagram syntax.) Following the suggestion
made in [9], there is a NetListItem class that is the base for all classes of objects that appear
in the input netlist. This is the base class that handles parameters. Figure 1.2 shows some of the
methods provided by this class. All the netlist items share a common syntax so that the element
model developer does not need to worry about the details of element parsing and there is no need to
modify the parser to add new elements. For compatibility reasons, Spice-type syntax (which does
not have a consistent grammar) is supported by the parser outside the network package. Support
for the elements using SPICE syntax is implemented for each element in the parser where each SPICE
element is renamed as a FREEDA™ element.

Element

* getNumTerms()
* connect()

* getTerminal()

+ init()

* check()

* getElemData()
* fillMNAM()

+ svHB()

* svTran()

Figure 1.3: The Element class.

The Element class contains basic methods common to all elements as well as the interface
methods for the evaluation routines. Some of the methods of this class (Figure 1.3) need to be
overridden by the derived classes. For example, in class D, svTran() is intended to contain the code
to evaluate the time domain response of a diode. This function is used by DC and transient analyses.
The same happens with svHB() and £i11MNAM(). The overhead imposed by these virtual functions is

4 CHAPTER 1. FREEDA™ ARCHITECTURE

small compared to the time spent evaluating the functions themselves and so this approach is a good
compromise between flexibility and efficiency. This idea has been used in [8-10]. fREEDA™also
offers a more elaborate mechanism for nonlinear element evaluation functions which will be described
in Section 1.4.

Circuit

addElement()
removeElement()
connect()

getElement()
setFirstElement()
nextElement()
getNumberOfElements()

+ 4+ + + + + +

addTerminal()
removeTerminal()
setRefTerm()
getTerminal()
setFirstTerminal()
nextTerminal()
getNumberOfTerminals()

+ + + + + + +

+

init()
+ checkReferences()

Figure 1.4: The Circuit class.

The ElementManager class is mainly responsible for keeping a catalog of all the existing
elements. Note that this class is the only one that ‘knows’ about each and every type of element
but this dependency is weak. The element list is included from an automatically generated file.
ElementManager is also used to automatically generate documentation for the element in html
format. The Circuit class represents either a main circuit or a subcircuit as a collection of elements
and terminals. It provides methods to add, remove and find elements and terminals using different
criteria and it also provides methods related to circuit topology. More details about this class are
given in Figure 1.4. All the Element and Terminal instances must be stored in data structure
inside the Circuit instance and the map container of the STL [70]. The map is a Sorted Associative
Container that associates objects of type Key with objects of type Data. Here Data is either
Element or Terminal and Key is int (the ID number). This is an example of where the features
of C++ are used to reduce development time. This is achieved at no overhead as an optimum
implementation of these concepts is embedded in the compiler. Subcircuit instances are represented
by the Xsubckt class, see Figure 1.5. The method attachDefinition() is used to associate a
Circuit instance where the actual subcircuit is stored to the particular Xsubckt instance and
expandToCircuit () takes a Circuit pointer as argument and expands the subcircuit. Note that
before expansion the complete hierarchy of a circuit is available in memory, so this engine could
eventually be used to perform hierarchical simulation. The reason for this is that a subcircuit can
be invoked (by an X element) before the subcircuit is defined (in a .SUBCKT block).

1.3. THE ANALYSIS CLASSES)

Xsubckt

* attachDefinition(circuit)
* expandToCircuit(circuit)

Figure 1.5: The Xsubckt class: This class handles the SPICE X element.

1.3 The Analysis Classes

<<type>>

NetListltem e
H I
; !
H I
él ! NETWORK i
I H
! i
! H
; 3
<<type>> i ;
Analysis : Circuit i
H I
i ;
H I
i i
H I

I
H I
; !
H I
; !
i 3
! i
AC i !
! i
i !
i <<type>> :
i Element Terminal :
! H
! i
! H
H I
; ;
H I
! H
H I
i ;
i L

SVTr

i
| |
i MesfetM i
SVHB i %
I
i i
A D ?
i T (diode) !
: »
. i
! R i
FreqMNAM ~ " ’i ”””””””” (resistor) :
i !
i
; ELEMENT TYPES

Figure 1.6: The analysis classes: AC, DC, SVTr and SVHB are different analysis types.

Figure 1.6 shows the relation between the network package, the elements and the analysis classes.
Each of these classes stores analysis-specific data that would traditionally be global. This leads to
the key desired attribute of flexibility in incorporating a new type of analysis, or even different
implementations of the same analysis type. Examples are the SVTr and SVHB classes which con-
tain the state-variable convolution transient and state-variable harmonic balance analyses described
in [107].

There are some components common to two or more analysis types. The natural way of handling
these components is by creating a class which is shared by the different analysis types. For example,
the FreqMNAM class handles a Modified Nodal Admittance Matrix (MNAM) in the frequency

6 CHAPTER 1. FREEDA™ ARCHITECTURE

domain. In a microwave simulator, the frequency domain admittance matrix is a key element for
most analysis types. Since it is used so often, special care was taken to optimize efficiency. The
elements fill the matrix directly without the need for intermediate storage of the element stamp.
They do that by means of in-line functions to reduce function call overhead. Elements can fill the
source vector in a similar way. The elements depend on the FreqMINAM methods, but this is not
a problem since the interface is very unlikely to change. The current implementation of MNAM
uses the Sparse library, described in the next Section, and is completely encapsulated inside the
FreqMNAM class. In the same way, the NLSInterface class encapsulates the nonlinear solver
routines. Therefore it is possible to replace the underlying libraries, if that is desired, without the
need for any code modification outside the wrapper classes. A final observation is that it is possible
to add any kind of analysis type provided that the appropriate interface is defined and the member
functions are written for each element type.

1.4 Nonlinear Elements

D
(diode)

Vsource MesfetM

TimeDomainSV

+ getdt()

+ getCurrentTime()

+ getX(index)

+ getdX_dt(index)

+ getDelayedX(index)
+ u(index)

+ getdU_dt(index)

+ i(index)

+ getDI_dt(index)

* setTime()

DC SVTr

Figure 1.7: Dependency inversion was used to make the elements independent of the analysis classes.

Nonlinear elements often use service routines provided by the analysis classes. In order to maxi-
mize code reuse and to avoid the dependence of the element code on a particular analysis routines, in
Transim elements depend on interface classes (Figure 1.7). The concept is similar to the dependency
inversion [62]. This is a technique which relies on interface classes (normally implemented using
abstract classes in C++) to make different parts of a program independent of each other. They
only depend on the interfaces. To achieve greater efficiency, in Transim the dependency inversion is
implemented using a concrete class with heavy in-lining and pass-by-reference.

In this way, the element routines and the analysis depend on an interface class, TimeDomainSV
(not shown in Figure 1.1 for clarity). TimeDomainSV is a class that is used to exchange infor-
mation between an element and a state variable based time domain analysis. It also provides some
basic algorithms such as time differentiation methods. This approach enables the element routines

1.4. NONLINEAR ELEMENTS 7

to be reused by several analysis types without the need to modify the element code (as long as the
new analysis is state variable-based). For example, the DC analysis uses the same interface element
as the SVTr.

fREEDA™ " offers a more refined way to implement nonlinear elements, based on state variables
(See chapter 3). By implementing those parametric equations using a special syntax in only one
function, Transim can obtain the analysis functions svHB(), svTran() and derivatives automatically.
This mechanism is termed generic evaluation.

Element

+ init()

+ svHB()

+ SVHB_deriv()
+ svTran()

»| FreqDomainSV
AdolcElement e

eval() {abstract} -

createTape() "™ TimeDomainSV

+ svHB()
+ SvHB_deriv()
+ svTran()

D(diode) MesfetM

+ init() + init()
- eval() - eval()

Figure 1.8: Class diagram for an element using generic evaluation. D(diode) and MesfetM are
elements.

Figure 1.8 shows the class diagram for an element using this feature. Note that the Diode class
is derived from a class (AdolcElement) which itself provides the analysis routines and deals with
the analysis interfaces. The Diode class only needs to implement the eval() function with the
parametric equations.

AdolcElement uses the Adol-C library (see Section C.5 for a detailed explanation) to evaluate
the parametric function and derivatives, but the concept is independent of automatic differentiation.
If automatic differentiation were not used, then the derived class (e.g. the Diode class) would have
to provide the Jacobian for the parametric equations.

The idea is in a way similar to the one used in [7], i.e. the primitive equations are ‘wrapped’
in analysis-specific generic functions and so there is no need to write a separate routine for each
analysis type. In the current work there are two additional features. The first is that the generic
evaluation is combined with the state variable concept of Section 7?7 and automatic differentiation.

8 CHAPTER 1. FREEDA™ ARCHITECTURE

This provides unprecedented simplicity in creating nonlinear element models. The second is that
a single mechanism is not mandatory. There are cases where it may not be practical to use this
approach, or the overhead involved (which is completely acceptable even for simple models such as
a diode) may not be properly amortized. In those cases, the element can implement the analysis
functions directly, without using the AdolcElement class.

It is important to remark that generic evaluation is implemented efficiently so there are no
superfluous calculations. The current implementation supports elements with any number of state
variables. Each element selects the input variables as a subset of the following: the state variables,
the first derivatives, the second derivatives and a time delayed version of the variables (the delay
may be different for each). No derivation, time delaying nor transformation is performed on the
unselected inputs.

For example, an element with only an algebraic nonlinearity (such as the VCT: voltage controlled
transducer) only selects the state variables without any derivatives or delays. As another example,
the MesfetM class implements the Materka-Kacprzac model for a MESFET. It requires two state
variables, but only one of them needs to be delayed.

A consequence of having a library of elements using generic evaluation is that it is possible to
add a new analysis type by just adding the appropriate evaluation routines to the AdolcElement
class. Thus, the maintainance and expansion of the simulator is simplified. Put another way the
code for a circuit element need only be implemented once and the identical code can be used by
many different types of analyses including, hopefully any future analysis type implemented in the
future.

1.5 Example: Use of Polymorphism

The concept of polymorphism is briefly explained in the introduction to object oriented programming
in Appendix A. The scheme presented in Section 1.4 constitutes a good example of the use of
polymorphism to solve a complex problem. Consider the segment of code of Figure 1.9. This code
evaluates the nonlinear element functions in state variable convolution transient analysis. elem_vec
is a vector of Element pointers implemented using the vector container of the C4++ STL. There

// Number of elements
int n_elem = elem_vec.size();
int i = 0;
// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {
// Set base index in interface object
tdsv->setIBase(i);
// nonlinear element evaluation
elem_vec[k]->svTran(tdsv);
i += elem_vec[k]->getNumberOfStates();

Figure 1.9: Nonlinear element function evaluation in convolution transient.

is no need to keep the size of the vector in a separate variable as elem_vec.size() returns the
size of the vector. Also, the memory management of the vector is dynamic and automatic; and
elem_vec [k] returns the Element pointer at position k in the vector.

Each pointer inside elem_vec points to different kinds of elements. For the transient routine
the actual type of each element does not matter. The line containing elem_vec [k]->svTran(tdsv)
will call the appropriate evaluation routine depending on the actual type of Element pointer. The
element may implement the routine directly or through generic evaluation, but it makes no difference
for the analysis routine.

1.6. CONTRIBUTORS 9

The resulting code is therefore simple and there is no need for lists of “if-then” statements. Those
lists would be very difficult to maintain, because each time an element is added or removed, all the
lists would have to be updated.

1.6 Contributors

The following contributed to this chapter
Carlos Christoffersen

Michael Steer.

10

CHAPTER 1.

FREEDA™ ARCHITECTURE

Chapter 2

Adding Linear Elements to
fREEDA™

2.1 The fREEDA™ Circuit Simulator

fREEDA™'is a netlist-based circuit simulator. The input format of the netlist file is similar to the
SPICE format with extensions for new device models, variables, sweeps, and repetitive simulation.
The program provides a variety of output data and plots. The addition of new circuit element models
and analysis types in fREEDA™"is much simpler than in other circuit simulators such as Spice. For
example, new element models are coded and incorporated into the program without modification to
the high-level simulator. The circuit analysis types currently available in fREEDA™ " are DC, AC,
harmonic balance (HB) [2], convolution transient [104], wavelet transient [105], and time-marching
transient [107]. Some insight into the program architecture is given in [106].

This tutorial describes the addition of linear device models to FREEDA™™ 1. We assume the reader
is familiar with C+4 syntax and basic concepts of object-oriented programming. Some issues such
as the creation of an element with multiple reference nodes are not yet described.

In the majority of cases the code for a new element can be written by following the code for an
existing similar element. For example, to write a new MOS transistor mode the code for an existing
MOS model can be followed.

2.2 Example: Adding a Linear Resistor

We illustrate the addition of linear device models using a step-by-step example with a simple model:
a linear resistor.

2.2.1 Netlist syntax

A Dbrief description of the netlist will help in understanding the rest of this section.

The standard FREEDA™ " netlist syntax is common to all elements. This differs from the SPICE
syntax but this is also supported but is less general in that the grammar of the standard fREEDA™ ™ netlist
syntax is common to all elements while the grammar of the SPICE syntax is not consistent and each
SPICE element must be handled separately in the parser.

IFurther details may be found at http://www.freeda.org
11

12 CHAPTER 2. ADDING LINEAR ELEMENTS TO FREEDA™

The standard FREEDA™ " netlist syntax is
(netlist Name):(element ID) (terminall)---(terminaln) [(parameter) = (value) -]
The FREEDA™ netlist syntax for a resistor (the r element) is, for example, r:rl nl n2 r=100.

r:1 is the elementID, nl and n2 are the names of two terminals and r is a parameter syntax
name.

SPICE syntax is also supported for the original SPICE elements. In SPICE syntax the equivalent
input is r1 n1 n2 100.

2.2.2 Class Name, Required Files, etc.

A good class name for the element is Resistor. By convention (in f REEDATM), class names should
begin with capital letters and contain no underscores. We need a netlist name for our element.
Assume we call it “r”.

The files containing the model description are located in the elements/ directory. There is a
header file (Resistor.h) containing the declaration of the class that defines the element and a file
containing the definition of the class with the actual model (Resistor.cc). Those are the only files
needed to define this element.

2.2.3 The Header File

The header file starts with comment lines describing the element type and sometimes a simple ASCII
drawing of the element schematic. The figure can be used to describe terminal numbering.
// This may look like C code, but it is really —*— C++ —*—

/1

// This is an resistor model

/1

// res

/1 o=——=/\/\/\===—0
/1

// by Carlos E. Christoffersen
Header files may be included more than once in C++ programs. To avoid multiple declarations of the

classes defined in the body of the header file, the definitions in the header file are enclosed by following
preprocessor directives:

#ifndef Resistor_h

#define Resistor_h

class Resistor : public

Element {

}
#endif
The Resistor class is derived from the base class Element. This is so for all elements in fREEDA" .
For simple elements, the only public functions that must be declared are the following;:
class Resistor : public Element

{

public:

Resistor(const string& iname);

2.2. EXAMPLE: ADDING A LINEAR RESISTOR

“Resistor() {}

static const char* getNetlistName()

{

return einfo.name;

}

// fill MNAM
virtual void filMNAM(FregqMNAM* mnam);

virtual void fillMNAM(TimeMNAM* mnam);

The constructor always takes the same argument, iname. This is the name of the particular instance of
the resistor being created (e.g. “rl”).

The destructor in this case is trivial. The next function, getNetlistName () must be defined in every
fREEDA™ " element. It returns the netlist name of the element (“r” in our example) and it is used during
the netlist parsing. It is declared static because this function is called before the actual element instance is
created.

The last two functions are the declarations of the functions to fill the entries corresponding to this
element in the modified nodal admittance matriz (MNAM) of the circuit being simulated.

The private members of this class are:

private:

// Parameter variables
double r;

// Element information
static ItemlInfo einfo;

// Number of parameters of this element
static const unsigned n_par;

// Parameter information
static ParmInfo pinfol[];

+
The netlist parameters of this element are declared as normal member variables. Here we have only one
parameter called “r”. There is no conflict with the netlist name of this element. The last three variables

can be left unchanged for any other element in fFREEDA™ . We will describe their use later.

2.2.4 The Class Source File

The include preprocessor directives go first. The ElementManager.h file must be always included first. For
linear elements, we also need to include the declarations for the MNAM classes. There are currently two
implementations of the MNAM in fREEDA™™. One in the frequency domain (FregMNAM) and one in the
time domain (TimeMNAM). The last included file is the declaration of the class for our element, Resistor.h.

#include ". ./network/ElementManager.h"

#include ". ./analysis/FreqMNAM.h"

#include ". ./analysis/TimeMNAM.h"

#include "Resistor.h"

Now we must define the static member variables:
// Static members
const unsigned Resistor::n_par = 1,

// Element information

13

14 CHAPTER 2. ADDING LINEAR ELEMENTS TO FREEDA

ItemInfo Resistor::einfo = {
nrn
"Resistor",
"Carlos E. Christoffersen",
DEFAULT_ADDRESS"elements/Resistor.h.html"

+

// Parameter information
ParmInfo Resistor::pinfo[] = {

"r" "Resistance value (Ohms)", TR_DOUBLE, true}
b

”r” under Element information is the NetlistName. ”r” under Parameter information is where the
parameter name is defined.

The n_par variable must be equal to the number of parameters defined for the element. In our example,
only one parameter is defined. Note the use of the scope (::) operator. It is used to indicate that the n_par
variable is a member of the Resistor class. The einfo structure contains strings describing the element.
The first string is the netlist name of the element (“r”). This name must always be given in lowercase letters.
The second string is a more verbose description of the element. The third string should list the authors
of the element code and the last string is used to store a web/ftp/e-mail address where more information
about the element can be found. The idea here is give full exposure to the creator of an element and that
an element is 'owned’ by the person or group that creates the element.

The pinfo vector contains the description of each parameter defined in the element. The first field
(always in lowercase) is the netlist name of the parameter followed by a more verbose description. The units
of the parameter (if any) should be included in this description. The third field is a flag denoting the type of
the parameter. The possible flags are defined in the NetListItem.h file. The corresponding types for each
flag are given in Table 2.1. The last field in the parameter description is a flag that is true if the parameter

is required in the netlist (i.e. an error occurs if the parameter is not specified) and false otherwise.

Flag Corresponding type
TRINT int

TR_LONG long int
TR_FLOAT float
TR_DOUBLE double
TR_-CHAR char
TR_STRING string
TR_-COMPLEX double_complex
TR_BOOLEAN bool
TRINT_VECTOR IntVector
TR_DOUBLE_VECTOR | DoubleVector
TRINT_-MATRIX IntMatrix
TR_-DOUBLE_MATRIX | DoubleMatrix

Table 2.1: Possible parameter types.

The constructor definition follows:
Resistor::Resistor(const string& iname) : Element(&einfo, pinfo, n_par,
iname)

{

// Value of r is required
paramvalue[0] = &res;

// Set the number of terminals

setNumTerms(2);

T™

2.2. EXAMPLE: ADDING A LINEAR RESISTOR

// Set flags
setFlags(LINEAR | ONE_REF | TR_.FREQ_DOMAIN);
}

The constructor for the Element class takes the static member variables we defined before and the
instance name (iname) as arguments. In the body of the Resistor constructor we must point each element
of the paramvalue vector to the address of the member variables corresponding to the netlist parameters.
The order of the elements in the paramvalue vector must be the same order that we used in the description
in pinfo.

The member function setnumTerms (), which is derived from the Element class, is used to set how many
terminals our element has.

The last function used in this constructor sets some flags that are useful to classify the different elements
in a circuit. Table 2.2 summarizes the meaning of each possible flag.

Flag Meaning

LINEAR Linear in HB and tran2 analyses.

NONLINEAR Nonlinear in HB and tran2 analyses.

ONE_REF One internal reference node (e.g. a normal element).
MULTI_REF Two or more internal reference nodes.

TR_TIME_DOMAIN | The element is treated in time domain in convolution
transient analysis. This includes nonlinear elements.
TR_FREQ_DOMAIN | The element is treated in frequency domain in convolution
transient analysis. This includes linear elements.
SOURCE The element is a source in tran2 analysis.

Table 2.2: Currently defined flags.

2.2.5 Filling the Modified Nodal Admittance Matrix

The last two methods in the source file are the routines used to fill the MNAM of the circuit. The first
function takes a pointer to an object of the FreqMNAM class.
void Resistor::fillMNAM (FregMNAM* mnam)
{
// Ask my terminals the row numbers
mnam—>set Admittance(get Terminal(0)—>getRC(), getTerminal(1)—>getRC(),

one/res);
}
Here set Admittance sets the four element stamp of an admittance g. Thus the stamp is
9 -9
2.1
|: -9 9 :| 21)

The first terminal of the element is obtained using getTerminal(0) and the second terminal by get-
Terminal(1). getRC() gets the row/column index and g = 1/r (i.e. one/res) is the conductance of the
element.

This is a class to represent a set of modified nodal admittance matrices in the frequency domain with
their respective source vectors. The following is the list of functions available to fill the matrices and the
source vectors:

15

16 CHAPTER 2. ADDING LINEAR ELEMENTS TO FREEDA™

inline void setElement(cons‘c unsigned& row, const unsigned& col,
const double_complex& val);

inline void setAdmittance(const unsigned& terml, const unsigned& term2,
const double_complex& val);

inline void setQuad(const unsigned& rowl, const unsigned& row2,
const unsigned& coll, const unsigned& col2,
const double_complex& val);

inline void setOnes(const unsigned& pos, const unsigned& neg,
const unsigned& eqn);

// Set one element of the current source vector
void setSource(const unsigned& row, const double_complex& val);

// Add value to a pair of elements of the current source vector
void addToSource(const unsigned& pos, const unsigned& neg,
const double_complex& val);
The FreqMNAM class also provides a set of methods to retrieve information about the matrices. One
of the most used in the element routines is:

// Get the current frequency

inline const double& getFreq();
This method returns the frequency at which the the MNAM is expected to be calculated.
The last method is used to fill the elements in the time-domain MNAM.

void Resistor::fillMNAM(TimeMNAM* mnam)

// Ask my terminals the row numbers
mnam—>setMAdmittance(getTerminal(0)—>getRC(), getTerminal(1)—>getRC(),
one/res);

For a simple element such as our resistor example, this function looks very similar to the frequency-
domain case. Nevertheless, the interfaces of the FregqMNAM and TimeMNAM classes are not exactly
the same. The following are the methods available to fill the MNAM in the time domain:

e

// Methods to fill the matrices used by the elements

// Methods for filling M
inline void setMElement(const unsigned& row, const unsigned& col,
const double& val);

inline void setMAdmittance(const unsigned& terml, const unsigned& term2,
const double& val);

inline void setMQuad(const unsigned& rowl, const unsigned& row?2,
const unsigned& coll, const unsigned& col2,
const double& val);

inline void setMOnes(const unsigned& pos, const unsigned& neg,
const unsigned& eqn);

2.3. TEMPLATE FILES FOR NEW LINEAR ELEMENTS 17

// Methods for filling Mp
inline void setMpElement(const unsigned& row, const unsigned& col,
const double& val);

inline void setMpAdmittance(const unsigned& terml, const unsigned& term2,
const double& val);

inline void setMpQuad(const unsigned& rowl, const unsigned& row2,
const unsigned& coll, const unsigned& col2,
const double& val);

inline void setMpOnes(const unsigned& pos, const unsigned& neg,
const unsigned& eqn);

// Reminder: reference source element is not stored

// Set one element of the source vector
inline void setSource(const unsigned& row, const double& val);

// Add value to a pair of elements of the source vector
inline void TimeMNAM::addToSource(const unsigned& pos, const unsigned&
neg, const double& val);

// Get the current time
inline const double& getTime();

Note that we must build two matrices denoted in the source code as M and Mp. These correspond to the
G and C matrices in Chapter 3 of Reference [107]. Another difference with the frequency domain case is
that the source vector is handled separately, as it will demonstrated in a future example.

2.2.6 Modifications to the rest of the fREEDA™" Source Files

Refer to the file readme.txt in the freeda-0.1 subdirectory for instructions on compiling a new element
. ™
into FREEDA .

2.3 Template Files for New Linear Elements

The files in this section are provided to simplify the creation of new elements. All that is required is to
replace Element1 by the name of the actual class (or name of the element), copy the files with appropriate
names in the elements/ directory and write the code to fill the MNAM.

2.3.1 Header File
// This may look like C code, but it is really —*— C++ —*—

/1

// This is a generic element template

// o *
A
// o -

#ifndef Elementl_h
#define Elementl_h 1

T™

18 CHAPTER 2. ADDING LINEAR ELEMENTS TO FREEDA

class Elementl : public Element

public:

Element1(const string& iname);

“Element1() {}

static const char* getNetlistName()

return einfo.name;

// fill MNAM

virtual void fillMNAM(FreqQMNAM* mnam);

virtual void fillMNAM(TimeMNAM* mnam);

2.3. TEMPLATE FILES FOR NEW LINEAR ELEMENTS

private:

// Parameter variables (replace by your parameter variables here)
double parl, par2;

// Element information
static ItemInfo einfo;

// Number of parameters of this element
static const unsigned n_par;

// Parameter information
static ParmInfo pinfo[];

}

#endif

2.3.2 Class Source File

#include ". ./network/ElementManager.h"
#include ". ./analysis/FreqMNAM.h"
#include ". ./analysis/TimeMNAM.h"
#include "Element1.h"

// Static members (set to the number of parameters of your element)
const unsigned Elementl::n_par = ;

// Element information

ItemInfo Elementl::einfo = {

"res",

"Element1",

"Your Name",
"http://your.web.page/elementl.html"

I

// Parameter information

ParmlInfo Elementl::pinfo[] = {

{"par1l", "Parameter 1 (Ohms)", TR_DOUBLE, true},
{"par2", "Parameter 2 (F)", TR_.DOUBLE, false}

I

T™

20 CHAPTER 2. ADDING LINEAR ELEMENTS TO FREEDA

Element1::Element1(const string& iname) : Element(&einfo, pinfo, n_par,

iname)

{
// Value of r is required
paramvalue[0] = &parl;

paramvalue[l] = &(par2 = le—12); // Example of how to set a default value.

// Set the number of terminals (Set to the number of terminals of
// your element)
setNumTerms(2);

// Set flags (do not change these for normal linear elements)
setFlags(LINEAR | ONE_REF | TR_.FREQ_DOMAIN);

}
void Elementl::fillMNAM(FreQMNAM* mnam)

// Put your model here
}
void Element1::fillIMNAM(TimeMNAM* mnam)

{

// Put your model here

2.4 Contributors

The following contributed to this chapter
Nikhil Kriplani
Carlos Christoffersen

Michael Steer.

Chapter 3

Adding Nonlinear Elements to
fREEDA™

3.1 The fREEDA™ Circuit Simulator

This tutorial describes the addition of nonlinear device models to FREEDA" " !. We assume the reader is

familiar with C++ syntax and basic concepts about object-oriented programming.

Presently, there are two ways to write nonlinear element models, using two different base classes. One
class, AdolcElement, has been extensively used and is the base class of the case study to follow. Unfortu-
nately, a limitation recently discovered in the Adol-C library is reflected directly into a limitation on the
elements that can be defined by the AdolcElement class. This class has three function prototypes for the
createTape () function. One of these prototype functions is designed to allow the declaration of a second
derivative state variable intended to track one of the declared state variables. This second derivative
capability has been found to be non-functional. Usage of the function prototype is still permitted,
as it is the only way to obtained delayed instances of state variables, but the argument for the second
derivative IntVector to createTape() in this case should be 'novar’ and this is noted herein.

The FREEDA™ ™ team is engaged in the on-going development of a new nonlinear base class called NAdol-
cElement which is intended to alleviate the limitation in Adol-C and allow evaluation of second and third
derivatives in models. While NAdolcElement is subject to change, model writers requiring these higher
order derivatives are invited to inspect the header files and source codes for NMOSx and PMOSx elements
(where x is 1,2,3, or 14) and the CompactDiode element and use them as templates for writing a model
based on the NAdolcElement class. Model writers are encouraged to use NAdolcElement for writing all new
elements, since over a period of time, AdolcElement will take on full legacy status and its continued use will
be discouraged.

A future revision of this document will also contain a case study of an element based on the NAdolcEle-
ment base class.

3.2 Example: Adding a Nonlinear Electro-Thermal Resistor

We illustrate the addition of nonlinear device models using a step-by-step example with a simple model: a
nonlinear electro-thermal resistor?.

!Further details may be found at http://www.freeda.org
2Note that the electro-thermal resistor behaves as a linear resistor when the parameter “pdr” is set to false

21

22 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA™

3.2.1 Netlist syntax

A brief description of the f REEDA?IVVInetlist syntax will assist in understanding of the details of model
construction. The standard fREEDA netlist syntax is common to all elements. This differs from the SPICE
. . . TM .
syntax. SPICE syntax is also supported but its grammar is less general than the standard fREEDA " netlist
. ™ . .
syntax. This is because the fREEDA" ~ grammar is common to all elements while the grammar of the SPICE
syntax is not consistent angMeach SPICE element must be handled separately in the netlist parser.
The standard fREEDA " netlist syntax is

(netlist Name):(element ID) (terminall)---(terminaln) [(parameter) = (value) -]

For example, the f REEDA ™ netlist syntax for the thermal resistor element (the tr element), which will
be shown here for tutorial purposes, is:

tr:trl nl n2 n3 n4 r0=100 1I=1 w=1 t=35 rsh=100 pdr=true

trl is the elementID and nl through n4 are the names of four terminals. r0, 1, w, t, etc. are pa-
rameter syntax names, and the values on the right side of the = symbol are parameter values specific to this
instance of tr:1. Some optional parameters have been omitted in this example.

3.2.2 Class Name, Required Files, etc.

A good class name for the element is Tresistor. By convention (in f REEDATM), class names should begin
with capital letters and contain no underscores. A netlist name is needed for the element. Assume we call
it “tr”. The netlist name must always be given in lowercase letters because the FREEDA " netlist parser
converts a netlist to lower case before attempting to identify elements or parameters.

The files containing the model description are located in the elements/ directory. There is a header
file (Tresistor.h) containing the declaration of the class that defines the element and a file containing the
definition of the class with the actual model (Tresistor.cc). Those are the only files needed to define this
element. They are described next.

3.2. EXAMPLE: ADDING A NONLINEAR ELECTRO-THERMAL RESISTOR 23

3.2.3 The Header File

The header file starts with comment lines describing the element type and sometimes a simple ASCII drawing
of the element schematic as shown in Listing 3.1. The figure can be used to describe terminal numbering.

Listing 3.1: Header Comments of Tresistor.h

// This may look like C code, but it is really —x— C++ —x—

// This is an electro—thermal resistor model

© N O U e W N =
~
~N

// II // II /, /l II // II /, /l II /l II//
// + tr +
// to o AAA o t
// + +
10 // + % * 4+
1 // + |+
12 // ++ | ++++ | ++
13 // \ |
14 // ts o o to
15 // tref tout
16 7/

[
3

// by Houssam S. Kanj

Header files may be included more than once in C++ programs. To avoid multiple declarations of the
classes defined in the body of the header file, the definitions in the header file are enclosed by following
preprocessor directives as in Listing 3.2.

Listing 3.2: Preprocessor Directives of Tresistor.h

17
18 #ifndef Tresistor_h

19 #define Tresistor_h 1

20

21 #include 7 ../ network/AdolcElement.h”
22

23

24 class Tresistor : public AdolcElement

The Tre?/[istor class is derived from the base class AdolcElement. This is so for all nonlinear elements
T
in fREEDA " that rely upon ADOL-C for evaluating the first and higher derivatives of vector functions. For
simple elements, the only public functions that must be declared are shown in Listing 3.3.

Listing 3.3: Class declaration and public functions of Tresistor.h

24

25 class Tresistor : public AdolcElement
26 { public:

27

28 Tresistor (const string& iname);

29
30 “Tresistor () {}

31

32 static const charx getNetlistName ()
33 {

34 return einfo .name;

35 }

36

37 // Do some local initialization

38 virtual void init () throw(stringé&);

39
40 // Get a vector with the indezes of the local reference mnodes.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

24 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA

// Get terminal pointers in term_list
// ordered by local reference mnode:
//

// to t1 t2 t3

//

// LRN1 LRN2
//

// local_ref_vec contains: {1, 3}

//

virtual void getLocalRefldx (UnsignedVector& local_ref_vec ,//
TerminalVector& term_list); //

// fill MNAM
virtual void fillMNAM (FreqgMNAM* mnam) ;

virtual void fillMNAM (TimeMNAM+ mnam) ;

The constructor always takes the same argument, iname. This is the name of the particular instance of
the thermal resistor being created (e.g. “trl”). It is passed from the input netlist at the time fFREEDA™is
run.

The destructor in this case is trivial. The next function, getNetlistName () must be defined in every
fREEDA" " element. It returns the netlist name of the element (“tres” in our example) and it is used during
the netlist parsing. It is declared static because this function is called before the actual element instance is
created.

The function init () must be defined for every nonlinear element based on Adol-C, since it is here where
we create the Adol-C tape. It is also here where we perform some initializations that cannot be done by the
constructor, ¢.e. when some parameters are not known at construction time.

The function getLocalRefIdx() must be defined whenever we want to implement an element with
multiple reference nodes e.g. spatially distributed elements or electro-thermal ones. It is important to know
that this function has nothing to do with linearity. So we may have a linear element with one reference
node, or with multiple reference nodes. We may also have a nonlinear element with one reference node, or
with multiple reference nodes. Local reference nodes are covered in further detail in Section 3.2.4.

The last two functions are the declarations of the functions to fill the entries corresponding to this ele-
ment in the modified nodal admittance matriz (MNAM) of the circuit being simulated. Please refer to [108]
for a detailed explanation on how to implement a linear element.

The private members of this class are shown in Listing 3.4.

Listing 3.4: Private functions of Tresistor.h

58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75

76

private:

virtual void eval(adoublev& x, adoublev& vp, adoublev& ip);

// Element information
static ItemInfo einfo;

// Number of parameters of this element
static const unsigned n_par;

// Parameter variables
double r0, rsh, 1, w, narrow, defw, t, tnom, tcl, tc2;

bool pdr;

// Parameter information

T™

T
78
79
80

82
83

3.2. EXAMPLE: ADDING A NONLINEAR ELECTRO-THERMAL RESISTOR

static ParmlInfo pinfo [];

// The calculated resistor wvalue
double r;
}s

#endif

The netlist parameters of this element are declared as normal member variables. Here we have 11 param-
eters, and again we emphasize that parameter names must always be given in lowercase letters because the
FREEDA " netlist parser converts a netlist to lower case before attempting to identify elements or parameters.
Please refer to reference [110] for a description of the parameters and the device equations. The variable “r”
is a temporary variable used to compute the resistance value when the resistor is linear i.e. when pdr ==
false. The last three variables can be left unchanged for any other element in f REEDA™™ . We will describe
their use later.

The only private function that must be defined is the eval function. It takes 3 arguments of type
adoublev&, the first one is an input argument, and the second and the third are output arguments. Things
will be more clear when we discuss the createTape function.

3.2.4 The Class Source File

Preprocessor Directives

The include preprocessor directives go first; see Listing 3.5. The ElementManager.h file must be always
included first. The next file to be included is AdolcElement.h. This file must be included in all nonlinear
elements that are based on Adol-C. Since our element is also a linear one, we also need to include the
declarations for the MNAM classes. There are currently two implementations of the MNAM in f REEDA™.
One is the frequency domain (FreqMNAM) and the other is the time domain (TimeMNAM). The last included

file is the declaration of the class for our element, Tresistor.h.

Listing 3.5: Preprocessor directives of Tresistor.cc

1
2
3
4
5

#include ”../network/ElementManager.h”
#include ” ../ analysis /FreQqMNAM.h”
#include ” ../ analysis /TimeMNAM.h”
#include ” Tresistor .h”

Static Variables and Model Parameters

Now we must define the static member variables as in Listing 3.6.

Listing 3.6: Static members and Parameter info of Tresistor.cc

7

8

9
10
11
12
13
14
15
16
17
18
19
20

// Static members
const unsigned Tresistor::n_par = 11;

// Element information
ItemInfo Tresistor::einfo = {
”» trﬂ7
”Tresistor”
”Houssam S. Kanj”
DEFAULT_ADDRESS” elements/ Tresistor .h.html”

b
// Parameter information
ParmInfo Tresistor :: pinfo[] = {

{”r0”, ”"Resistance value (Ohms)” , TRDOUBLE, false},

22
23
24
25
26
27
28
29
30
31

33

26 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA

{717, ”length (meters)” , TRDOUBLE, false},

{"w” , "width (meters)” , TRDOUBLE, false},

{”t”, ”system Temperature (Celsius)” , TRDOUBLE, false},

{"rsh” , ”"sheat resistance (Ohms/sq)” , TRDOUBLE, false},

{”defw” , ”default device width (meters)” , TRDOUBLE, false},
{”narrow” , "narrowing due to side etching (meters)” , TRDOUBLE, false},
{”tnom” , ”initial Temperature (Celsius)” , TRDOUBLE, false},

{"tcl” , ?Temperature Coefficient (1/Celsius)” , TRDOUBLE, false},
{"tc2” , "Temperature Coefficient (1/Celsius)” , TRDOUBLE, false},
{”pdr” , "Power Depenent Resistor” , TRBOOLEAN, false}

};

The n_par variable must be equal to the number of parameters defined in our element. In our example,
11 parameters are defined. Note the use of the scope (::) operator. It is used to indicate that the n_par
variable is a member of the Tresistor class. The einfo structure contains strings describing the element.
The first string is the netlist name of the element (“tr”). This name must always be given in lowercase letters
because the fREEDA" " netlist parser converts a netlist to lower case before attempting to identify elements
or parameters. The second string is a more verbose description of the element. The third string should list
the authors of the element code and the last string is used to store a web/ftp/e-mail address were to find
more information about the element.

The pinfo vector contains the description of each parameter defined in the element. The first field
(again, always in lowercase) is the netlist name of the parameter followed by a more verbose description.
We recommend to include the units of the parameter (if any) in this description. The third field is a
flag denoting the type of the parameter. The possible flags are defined in the NetListItem.h file. The
corresponding types for each flag are given in Table 3.1. The last field in the parameter description is a flag

Flag Corresponding type
TRINT int

TR_LONG long int
TR_FLOAT float
TR_DOUBLE double
TR_CHAR char
TR_STRING string
TR_-COMPLEX double_complex
TR_BOOLEAN bool
TRINT_VECTOR IntVector
TR_DOUBLE_VECTOR | DoubleVector
TR_INT_MATRIX IntMatrix
TR_DOUBLE_MATRIX | DoubleMatrix

Table 3.1: Possible parameter types.

that is true if the parameter is required in the netlist (i.e. an error occurs if the parameter is not specified)
and false otherwise.

Constructor for a Nonlinear Instance of Tresistor

The constructor definition for a nonlinear instance of Tresistor (where pdr == true) follows in Listing 3.7.

Listing 3.7: Constructor definition of Tresistor.cc

35
36
37
38

Tresistor :: Tresistor (const string& iname) : AdolcElement(&einfo ,
pinfo, n_par, iname) {

T™

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

3.2. EXAMPLE: ADDING A NONLINEAR ELECTRO-THERMAL RESISTOR

// Set parameters

paramvalue[0] = &(r0);
paramvalue[l] = &(1);
paramvalue[2] = &(w);
paramvalue[3] = &(t);
paramvalue [4] = &(rsh);
paramvalue[5] = & (defw = le—6);
paramvalue [6] = & (narrow = zero);
paramvalue[7] = & (tnom = 27);
paramvalue[8] = & (tcl= zero);
paramvalue[9] = & (tc2= zero);
paramvalue[10] = & (pdr=false);

The constructor for the AdolcElement class takes the static member variables we defined before and the
instance name (iname) as arguments. In the body of the Tresistor constructor we must point each element
of the paramvalue vector to the address of the member variables corresponding to the netlist parameters.
The order of the elements in the paramvalue vector must be the same order that we used in the description
in pinfo.

Then the init () function definition follows in Listing 3.8.

Listing 3.8: Initialization function of Tresistor.cc

void Tresistor ::init () throw(stringé&)

if (!isSet(&w))
w = defw;
if (!isSet(&t))

t = tnom;

it (pdr){
// Set the number of terminals
setNumTerms (4);
// Set flags
setFlags (NONLINEAR | MULTLREF | TR.TIMEDOMAIN);
// Set number of states
setNumberOfStates (2);

if (!lisSet(&r0)) {

if (!isSet(&l1))
throw(r0 or 1 must be specified for the resistance”);
lisSet(&rsh))

f(
throw(”rsh must be specified for the resistance”);

}

// create tape
IntVector var(2,0);

78 var[1] = 1;
79 createTape(var);
80 }
The init () function starts by doing some conditional assignments. The condition test cannot be carried
out in the constructor since the parameters value are not known at construction time. Then if pdr == true,

i.e. if it is an electro-thermal resistor, we use the member function setnumTerms (), which is derived from
the Element class, to set how many terminals our element has.

The next function is used to sets some flags that are useful to classify the different elements in a circuit.
Table 3.2 summarizes the meaning of each possible flag. Function setNumberOfStates() is used to set the
number of state variables used to implement the model. It is important to know that the the functions
setnumTerms (), setFlags(), & setNumberOfStates() could be called from the constructor, but in our

27

28 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA

Flag Meaning

LINEAR Linear in HB and tran2 analyses.

NONLINEAR Nonlinear in HB and tran2 analyses.

ONE_REF One internal reference node (e.g. a normal element).
MULTI_REF Two or more internal reference nodes.

TR-TIME_DOMAIN | The element is treated in time domain in convolution
transient analysis. This includes nonlinear elements).
TR_FREQ_DOMAIN | The element is treated in frequency domain in convolution
transient analysis. This includes linear elements).
SOURCE The element is a source in tran2 analysis.

Table 3.2: Currently defined flags.

special case, we needed to put them in the init () function since we had to take some conditional decisions
based on the parameters which are not known at construction time. Note, for example, that it is vitally
important to set the NONLINEAR flag when an element requires the Adolc library facilities to implement
a nonlinear function.

Next, the code makes some tests on the input parameters, and then throws an exception if some param-
eters are missing.

The final thing that you need to do is to create the Adolc Tape. This is done by calling the createTape ()
function with the proper arguments. All nonlinear elements that are derived from the AdolcElement class
must do this.

First the statement IntVector var(2,0); create a vector called var of two elements and initialize them to
0. Then the statement var[1] = 1; initialize the second element to 1. Last, the statement createTape (var)
creates the tape.

Building Arguments for createTape()

We will digress from the discussion of the Tresistor model for a moment in order to discuss the process of
creating state variables in some detail. The createTape () function is a member function of the AdolcElement
class. There are three versions of it corresponding to three different valid function prototypes. The choice
of function prototype depends upon the function that the model is to implement.

1: createTape(IntVector& var)
e Takes 1 argument, a vector of state variables.
e This is the form used in the Tresistor model.
2: createTape(IntVector& var, IntVector& dvar)

e Takes 2 arguments — a vector of state variables and a vector corresponding to 1st derivatives of
state variables.

e This is the most widely used form, since many physical models use physical variables and their
first derivatives.

3: createTape(IntVector& var, IntVector& dvar, IntVector& d2var,
IntVector& t_var, DoubleVector& delay)

e Takes 5 arguments — a vector of state variables, first derivatives, second derivatives, delayed state
variables, and a vector of state variable delays.

e This form must be used 2nd derivatives or time delays are required in models.

For example, suppose that we need to create a new f REEDA™™ element with the following description

(f() can be v() ori()):

T™

3.2. EXAMPLE: ADDING A NONLINEAR ELECTRO-THERMAL RESISTOR

(o, v, ap, F0_ 401 dia 'y
OELED T a0 dE de?

xo(t — To),xg(t — 7‘2))

Then the arguments of the createTape() function would be as follows:

createTape(i_vecl, i_vec2, i_vec3, i_vec4, d_vec)

In this case 4 vectors of type IntVector& and one vector of type DoubleVector& are needed. The first one,
i_vecl1, consists of the indexes of the state variables. The second one, i_vec2, consists of the indexes of the
derivatives of the state variables. The third one, i_vec3, consists of the indexes of the second derivatives of
the state variables. The fourth one, i_vec4, consists of the indexes of the state variables that are delayed.
The last vector, d_vec, contains the value of the delays applied to the state variables created by passing
i_vec4 to createTape(). For this example, let 79 be 1 picosecond and 72 be 0.1 picosecond. To prepare
this set of vectors for passing to createTape(), the portion of C++ code in Listing 3.9 would appear in
the init() function prior to the call to createTape().

Listing 3.9: Example creating input vectors passed to createTape()

N

© o N o «u

// Set number of states
setNumberOfStates (3); // Three main state vars xo, z1, and 2

// Argument vector for creating main state variables

IntVector i_vecl(3,0); // Initialize 3—element integer array to 0
i_vecl (1) = 1; // Set elements for additional state wvariables
i_vecl (2) = 2;

// Argument vector for 1st derivatives of state variables

IntVector i_vec2(3,0); // Initialize S3—element integer array to 0
i_vec2 (1) = 1; // Set elements for additional 1st derivatives
i_vec2(2) = 2;

// Argument vector for 2nd derivatives of state variables
IntVector i_vec3(1,0); // Initialize 1—element integer array to 0
i_vec3 (0) = 2; // Set element to get 2nd derivative of state var x2!

// Argument vector for delayed state wvariables
IntVector i_vecd (2,0); // Initialize 2—element integer array to 0
i_vecd (1) = 2; // Set elemement to get delayed copy of state var za!

// Argument vector for time delays

DoubleVector d-vec (2,0); // Init. 2—element double array to 0
d_vec(0) = 1le—12; // Delay state wvariable zo by 1 picosecond
d_vec (1) = 1e—13; // Delay state variable za by 0.1 picosecond

Notice that i_vecl and i_vec2 are equivalent, so in this case it was not necessary to create i_vec2, and
one could instead have simply passed i_vecl to createTape() twice, in succession:

createTape(i_vecl, i_vecl, i_vec3, i_vec4, d_vec)

This emphasizes the point that the variables of type IntVector& and DoubleVector& are used only to create
the collection of state variables and their derivatives and delayed versions. A survey of the source code
library for existing f REEDA" " elements will reveal many instances of this sort of variable re-use in calls to
createTape().

After the completion of the call to createTape(), a vector variable x[] of type adoublev& will have
been created. x[] is limited in scope to the instance of the model object. The number of elements in x[]
will be equal to the number of unique mathematical objects requested in the call to createTape(). For the

30 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA™

example here, there are 3 state variables, 3 first derivatives of state variables, 1 second derivative of a state
variable, and 2 delayed state variables, so the total number of elements in x[] will be 9, with indices running
from 0 to 8. State variables and their derivatives or delays are assigned indices in x[] consistent with the
order of argument passage to createTape(). Table 3.3 summarizes the relationship between vector input
variables to createTape() and the resulting state variables created by createTape() for the example call
described here:

Table 3.3: State Variable representation in FREEDA™.

Physical to State Variable Mapping
Physical Variable | X Variable

xg x[0]
X1 x[1]
T2 X[2]
dxo/dt x[3]
dl‘l/dt X[4]
dxo/dt x[5]
d*xo/dt? x[6]
xo(t — 70) x[7]
2ot — T2) x[8]

One final note on constructing the arguments to createTape(): There are times when the implementa-
tion of a complex function may not require the creation of state variables corresponding to each argument in
the most complex function prototype for createTape() . For example, suppose in the previous example,
that we did not need the second derivative of the second state variable, but we still needed the time-delayed
variables. Then instead of declaring an IntVector called ivec_3 of non-zero length, we would declare vector
without a declared length, or a null vector, and pass this as an argument to createTape() instead of
ivec_3. It is common in many fREEDA ™ elements for this null vector to be called novar. For example, if
indeed we wished to ignore second derivatives in the example in Listing 3.9, then we would alter lines 14
through 16 as follows in Listing 3.10 and then call createTape() as follows:

createTape(i_vecl, i_vec2, novar, i_vec4, d_vec)

Listing 3.10: Declaring a null vector argument for createTape()

// Argument vector for 2nd derivatives of state variables
IntVector novar // Initialize a null vector (no elements)
// Nothing to set!

Notice: A limitation in the functionality of the Adol-C Library has recently been uncovered: The second
derivative of state variables, normally invoked by using the most complex form of the createTape prototype,
has been determined to be non-functional. Thus, the use of novar as noted in listing 3.10 is mandatory. The
development of the NAdolcElement class is an attempt to work around this limitation. See section 3.4 for
further information.

Returning our attention to the Tresistor element, the function being implemented was f (xo , 1), so
that only one vector filled with 0, and 1 was needed. To better understand the process of creating the
Adolc Tape, model writers are advised to read the implementation of the createTape() function which
is a member function of the AdolcElement Class. Model writers are also advised to read the ADOL-C
documentation [109].

3.2. EXAMPLE: ADDING A NONLINEAR ELECTRO-THERMAL RESISTOR

Constructor for Linear instance of Tresistor

The rest of the code in the init() function implements the linear part of the Constructor (invoked when
pdr == false in the netlist instantiation) and is shown in Listing 3.11. Please refer to [108] for more details.

Listing 3.11: Init function of Tresistor.cc (continued)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

else{ // pdr==false
// Set the number of terminals
setNumTerms (2);
// Set flags
setFlags (LINEAR | ONEREF | TRFREQDOMAIN);
// calculate the resistor wvalue
if (isSet(&r0)){
r = r0x(1+tcl*x(t—tnom)+tc2*(t—tnom)*(t—tnom));

else {
if (lisSet(&1))
throw(”r0 or 1 must be specified for the resistance”);
if (!isSet(&rsh))
throw (”rsh must be specified for the resistance”);
r = rshx((l—narrow)/(w—narrow))*(14+tcl*(t—tnom)+tc2*(t—tnom)x*(t—tnom));

}
}

Local Reference Nodes and the getLocalRefldx() function

We will digress again from the Tresistor model for a moment to discuss the local reference node concept
and some related modelling conventions inherent in fREEDA™™.

A spatially distributed circuit is a circuit which, by definition, is much larger than the wavelengths of the
signals it processes. In such circuits, the notion of a single reference node or ground terminal is inapt, since
currents passing through such a reference node from one piece of spatially distributed circuitry to another
cannot physically do so instantaneously. To overcome this limitation and permit modelling of circuits which
may be spatially distributed, the local reference node concept was developed. Put adroitly (but in a way that
should be widely understood), local reference nodes allow the definition of multiple ”ground” terminals so
that spatially distinct circuitry can reference their local circuits to these physically isolated reference nodes.
Readers interested in understanding more about the theory and the implementation of the local reference
node concept should refer to [111] and [112].

The availability of local reference nodes in fREEDA"" enables the definition of spatially distributed circuit
models. Before discussing the coding details, which are straightforward, some modelling conventions used
in FREEDA" ™ will first be described. These conventions are familiar to researchers in the circuit simulation
community, but may not be familiar to new FREEDA™ " users who wish to write fREEDA" models.

Consider the ”Blob” circuit shown in Figure 3.1. Blob is a circuit that has 5 terminals and is spatially
distributed. It has three circuit terminals with terminal numbers 0, 1, and 3, and two reference nodes which
have terminal numbers 2 and 4, as shown in the figure. Circuit terminals 0 and 1 use terminal 2 as a local
reference node and circuit terminal 3 uses terminal 4 as a local reference node. Although details of the
internal operation of ”Blob” may not be known, it is clear that the circuits associated with terminals 0 and
1 are spatially distinct from the circuits associated with terminal 3.

Note that in all FREEDA" " model source code definitions, terminal number 0 is always a circuit terminal.
This may seem incorrect to SPICE users familiar with using node 0 as the ground terminal in netlist
definitions. However, note that a FREEDA ™ netlist still permits the use of node 0 in the netlist for the
ground terminal. Bear in mind the distinction between coding a model definition, which we are doing here,
and instantiating a model, which is done in a netlist.

Figure 3.1 contains other information worth noting. First, note that each state variable is assigned, in
order, to each non-reference node in the model. Second, notice the mention of the voltage variables vp[]

31

32 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA

Terminal 0
O Terminal 3

ip[0] \

+ —_— "Blob"

Terminal 2 Terminal 4

Figure 3.1: Spatially-distributed Blob circuit.

and the current variables ip[]. These variables are also initially created in the call to createTape(), and
are made available to each model instance’s eval() function. (The eval() function will be discussed in
detail in section 3.2.4 .) For each state variable created by the first argument in the call to createTape(),
a corresponding vp[] and ip[] variable is created. Third, note that by convention, the direction of the
current variable ip[] is into the terminal, and the voltage vp[] is defined positively at the circuit terminal
and negatively at the corresponding reference node. Users wishing to define currents or voltages contrary
to this convention may do so by simply negating the numerical expressions for vp[] and ip[] that appear
in the model’s eval () function. Finally, note that there are no state variables associated with the reference
nodes, since voltages are defined relative to them and Kirchoff’s current law requires that the sum of the
non-reference terminal currents associated with a particular reference node must flow into that reference
node.

Those accustomed to having a ”port” perspective for models will notice that, in general, the number of
ports is equal to the number of required state variables, even if local reference terminals are shared among
one or more ports.

Returning now to the model code, implementation of the getLocalRefIdx() function is very simple
and straight forward. Refer to Listing 3.12. The first two lines must always be included. Then, we push
back each terminal in the terminal list by writing term_list.push_back(getTerminal(n)); where "n” is
the index of the terminal. When we push back a local reference node we must also push the node back into
the local reference vector by writing local_ref_vec.push_back(m); where "m” is the index of the terminal
that we want it to be a local reference.

The getLocalRefIdx() function definition follows in Listing 3.12.

Listing 3.12: getLocalRefldx function of Tresistor.cc

void Tresistor :: getLocalRefldx (UnsignedVector& local_ref_vec ,
TerminalVector& term_list)

// Make sure the wvectors are empty
term_list.erase(term_list.begin(), term_list.end());

T™

3.2. EXAMPLE: ADDING A NONLINEAR ELECTRO-THERMAL RESISTOR

local_ref_vec.erase(local_ref_vec.begin (), local_ref_vec.end());

// Insert vector elements

term_list . push_back(getTerminal (0));
term_list.push_back(getTerminal (1)); // Local reference terminal
local_ref_vec.push_back (1); // Local reference index

it (pdr){
term_list .push_back(getTerminal (2));
term_list . push_back(getTerminal (3)); // Local reference terminal
local_ref_vec.push_back (3); // Local reference index

}
}

Finally, note that if a model has only 1 local reference node, then it is not necessary to declare the get-
LocalRefldx function at all in the header file and it may be omitted from the source code file. Note that
when getLocalRefldx is not used, then the highest numbered terminal is defined as the local reference ter-
minal. Referring to listings 3.8 and 3.11 where the call to setNumTerms () appears, if n is the argument to
setNumTerms (), then there will be n terminals numbered 0,1, ..,n-1, and when getLocalRefldx is not used,
then n-1 will be the terminal number of the reference node.

The Eval function and using condassign()

The eval() function definition for Tresistor is shown in Listing 3.13.

Listing 3.13: Eval function of Tresistor.cc

void Tresistor ::eval(adoublev& x,
adoublev& vp, adoublev& ip)
{

// z[0]: resistor wvoltage
// x[1]: deltatemp in deg. Celsius

vp[0]=x[0];
vp[l]=x[1]+tnom+273; //up[l]==tp[1] in Kelvin

adouble res;
if (isSet(&r0)){
res = r0 * (one 4+ tcl * x[1] + tc2 * x[1] * x[1]);

else {
res = rsh % ((l-narrow) / (w—narrow))
% (one + tclsx[1] + tec2 * x[1] %= x[1]);
}
ip [0] = x[0] / res;
ip[1] = = x[0] = ip[0]; //ip[1]==pp[0];

The eval() function is the implementation of the device equations. It is in here where the voltages
and currents are related to the state variables. The eval() function takes three vectors of type adoublev,
the first one is the state variable vector, and it is considered as the input, the second and the third one
are the voltages and the currents, and these two vectors are considered as output. The eval() function is
called from the createTape() function. In this way, the Adol-C library keeps track of all operations that
are performed on the adouble variables so that it can evaluate the derivatives whenever needed.

Due to encapsulation of most of the low-level handling of the state variables within AdolcElement,
manipulation of the state variables within the eval () function for an element can be done in a straightforward

33

34 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA

fashion using the same operators as that for floating-point arithmetic. These operators are all overloaded,
but this is transparent in most cases. However, when conditional branches affecting the assignment of active
variables are to be made within an eval () function, it is mandatory to use a routine with the Adol-C library
designed to facilitate conditional branching. This routine is called condassign().

The condassign() routine normally takes 4 arguments which can be of type adouble or scalars. For
users familiar with C and C++, a function call such as condassign(a,b,c,d) corresponds with the syntax
of the following conditional assignment:

a=(b=0)7c:d

For those familiar with Matlab, Listing 3.14 shows how the same conditional branching statements might
be implemented in that language.

Listing 3.14: Matlab equivalent of condassign()

ST SO VR

if (b > 0)
a = c
else
a=d
end

As an illustrative example, consider a rudimentary model for a semiconductor junction diode. Define the
current as being 0 whenever the voltage across the junction is less than, say, 0.7 volts, and let the current
be non-zero above the threshold. Let voltage be the parametric state variable, so v(t) = z(t), and let the
current be defined as follows:

i) = I [exp(29=2T) — 1] if a(t) > 0.7 or 2(t) — 0.7 > 0
0 if 2(t) < 0.7

In this diode equation, I is the reverse saturation current and vr is the ”temperature voltage.” Both are
constants. Letting x[0] be the state variable parameter x(¢), vp[0] be the junction voltage v(t), and ip[0]
be the current i(t) across the junction, Listing 3.15 shows how the conditional branch for the simple junction
diode model would be implemented.

Listing 3.15: Example of branch for simple junction diode.

AW N e

vp[0] = x[0]; \\ voltage equals parameter
condassign (ip [0], x[0] —=0.7, \ b with b’s condition shifted to 0.7
Is*(exp ((x[0] —=0.7)/vt)—=1), \ xponential characteristic

; \

)

a,
c ==
d ==

e
0

—

The fillMNAM function

The last two methods in the source file, in Listing 3.16, are the routines used to fill the MNAM of the circuit.
Please refer to [108] for a detailed explanation on how to fill the MNAM.

Listing 3.16: fillMNAM function of Tresistor.cc

5 void Tresistor :: fillMNAM (FreqMNAM* mnam)

// Ask my terminals the rTow numbers
mnam—>set Admittance (getTerminal(0)—>getRC (), getTerminal(l)—>getRC(),
one/r);

void Tresistor :: fillMNAM (TimeMNAM* mnam)

{

3.3. TEMPLATE FILES FOR NEW NONLINEAR ELEMENTS

// Ask my terminals the row numbers
mnam—>setMAdmittance (getTerminal(0)—>getRC (), getTerminal(l)—>getRC(),
one/r);

3.2.5 Using the cout routine for debugging

In the course of developing models, debugging will inevitably be necessary. In this section we provide a
few suggestions on using the C++ standard output routine cout to facilitate debugging. Often in model
development, modelling equations are valid over restricted portions of the input domain. Considering the
rudimentary p-n junction diode again, suppose the current is undefined for voltages below the threshold
voltage, rather than set to zero. We dispense entirely with the condassign() statement, but now it would
be useful to have some sort of error notification to the user if voltages below the threshold are present.
Listing 3.17 shows an example of how the code for the rudimentary diode might be modified to use cout to
print such a message.

Listing 3.17: Using cout to facilitate model debugging.

W N e

o o

vp[0] = x[0]; \\ voltage equals parameter
if (x[0] < 0.7)

cout << "x =” << x[0] << ”.. Invalid input voltage.” << endl;
ip[0] = Isx*(exp((x[0]—=0.7)/vt)—1); \\ exponential characteristic

Another use for cout is to validate that model parameters are being passed as expected from the netlist into
model instances. In these cases, cout statements would appear in the init () function call for the element
and echo the parameter values of the model instance.

Note that when an active variable is streamed to the standard output, the real value of the variable is
followed by an ”(a)” to indicate that the variable is active. This is a result of the overloading of the ” <<”
operator by the Adol-C library.

3.2.6 Modifications to the rest of the fREEDA™" Source Files

Refer to the 1ﬁ11v? readme.txt in the freeda-0.1 subdirectory for instructions on compiling a new element
into fREEDA .

3.3 Template Files for new Nonlinear Elements

The file listings in this section are provided to simplify the creation of new elements. All that is required is
to replace Element1 by the name of the actual class, copy the files with appropriate names in the elements/
directory and write the code to implement the init and the eval functions, and the function getLocalRefIdx
if you want to create an element with multiple reference nodes.

3.3.1 Header File
The header file template is shown in Listing 3.18.

Listing 3.18: Element1.h

N T N

// This may look like C code, but it is really —x— CH++ —x—

//

// This is a generic element template
//

// —F

// o————+ +—0

36

s //
o //
10

11 #ifndef Elementl_h
12 #define Elementl_h 1
13

14 class Elementl
15 {

16 public:

17

public AdolcElement

18 Elementl (const string& iname);

CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA

19
20 “Elementl () {}

21

22 static const charx getNetlistName ()

23 {

24 return einfo .name;

25 }

26

27 // Do some local initialization

28 virtual void init () throw(string&); // to perform initialization that

29 // cannot be done by the constructor

30 // and to create the Adolc Tape

31

32 // Implement the getLocalRefldzr function if you are creating

33 // an element with multiple reference nodes.

34 // Get a vector with the indezes of the local reference nodes.

35 // Get terminal pointers in term_list

36 // ordered by local reference mnode:

st //

38 // to t1 t2 t3

so //

w

a1 // LRNi LRNZ

w

43 // local_ref_-vec contains: {1, 3}

w

45 virtual void getLocalRefldx (UnsignedVector& local_ref_vec , // to implement a spatially
46 TerminalVector& term_list); // distributed element, or an
a7 // electro—thermal one with
48 // multiple reference nodes.
49

50 private:

51

52 // Implement the eval function. It is here where you write

53 // your device equations.

54 virtual void eval(adoublev& x, adoublev& vp, adoublev& ip);

55

56 // Parameter wvariables (replace by your parameter variables here)

57 double parl, par2, ., parn;

58

59 // Element information

60 static ItemInfo einfo;

61

62 // Number of parameters of this element

63 static const unsigned n_par;

64

65 // Parameter information

66 static ParmlInfo pinfo [];

67

68
69

T™

70

3.3. TEMPLATE FILES FOR NEW NONLINEAR ELEMENTS

#endif

3.3.2 Class Source File

The class source file template is shown in Listing 3.19.

Listing 3.19: Elementl.cc

© 0 N e U oA W N e

e e
I U S

15

16

18
19
20
21
22
23
24
25
26
27
28
29

#include ” ../ network/ElementManager.h”
#include ”../network/AdolcElement.h”
#include 7 ../ analysis /FreQqMNAM.h”
#include ” ../ analysis /TimeMNAM. h”
#include ”Elementl.h”

// Static members (set to the number of parameters of your element)
const unsigned Elementl::n_par = ;

// Element information
ItemInfo Elementl::einfo = {
”tres?” ,
”Elementl”
”Your Name” ,
"http://your.web.page/elementl.html”

}s

// Parameter information
ParmInfo Elementl:: pinfo[] = {
{”parl” , ”Parameter 1 (Ohms)” , TRDOUBLE, true},
{”par2” , ?Parameter 2 (The Unit)” , TRDOUBLE, false}
. // Note that the sequence of
// parameters here should be
. // the same as in the comstructor
{”parn” , ?Parameter n (The Unit)” , TRBOOLEAN, false}

)

Elementl :: Elementl (const string& iname) : AdolcElement(&einfo , pinfo, n_par, iname)

30 {

32
33
34
35
36
37
38
39
40
41
42
43
44
45

// Set parameters
paramvalue[0] = &parl;
paramvalue[l] = &(par2 = le—12); // Ezample of how to set a default value.

// Note that the sequence of parameters here
. // should be the same as in the struct pinfo/[]
paramvalue [n] = &(parn = false);

}

void Elementl::init () throw(string&)

{
// Set the number of terminals (Set to the number of terminals of
// your element)
setNumTerms (4);

// Set flags. If your element has multiple reference nodes,
// set the second flag to MULTIREF
setFlags (NONLINEAR | ONEREF | TR-TIME_DOMAIN);

// Set number of states
setNumberOfStates (2);

// create the tape
IntVector var(2,0);

37

65
66
67
68
69
70
71
T2
73
T4
75
76
7
78
79
80
81
82
83

38 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA

var [1] = 1;
createTape(var);

}

void Elementl::eval(adoublev& x,
adoublev& vp, adoublev& ip)

// Implement the eval function
// write the device equations

}

void Elementl:: getLocalRefldx (UnsignedVector& local_ref_vec ,
TerminalVector& term_list)
{

// Make sure the wvectors are empty

// always write these functions as they are
term_list.erase(term_list.begin(), term_list.end());
local_ref_vec.erase(local_ref_vec.begin (), local_ref_vec.end());

// Insert vector elements

// push_back all the terminals in the term_list

// push_back all the local reference terminal in the local_-ref_vec
term_list.push_back(getTerminal (0));

term_list . push_back(getTerminal (1)); // Local reference terminal
local_ref_vec.push_back (1); // Local reference index

term_list . push_back(getTerminal (2));

term_list . push_back(getTerminal (3)); // Local reference terminal
local_ref_vec.push_back (3); // Local reference index

3.4 A Note on the Eval Routines in fREEDA™

Most nonlinear computations require the evaluation of first and higher derivatives of vector functions with m
components in n real or complex variables. f REEDA" " uses the package ADOL-C which automatically com-
putes the derivatives of non-linear functions by successive implementation of the chain rule. These calculation
occur at a fraction of the time and is relatively free of truncation errors. The interface details to the ADOL-C
library from within FREEDA"" can be found in path_to_freeda/simulator /network /NAdolcElement.cc.

Every nonlinear element in f REEDA""has an eval function that describes the constitutive equations
for the particular element at any instant. This function is called from within NAdolcElement.cc during
evaluation of the tape. For more details on the tape, refer to ADOL-C documentation.

3.4.1 Parameterized Device Models

A non-linear device model can be described with the following set of equations
v(t) = v(x(t),dx/dt,...,d™x/dt ,xp(t)) (3.1)

i(t) = i(x(t),dx/dt,...,d™x/dt ,xp(t)) (3.2)

where v(t) and i(t) are vectors of voltages and currents at the ports of the non-linear device, x(t) is a
vector of parameters or state variables and xp(t) is a vector of time delayed state variables. There are
several models like the microwave diode, the Gummel-Poon BJT and Berkeley’s BSIM4 which for accurate
modeling, require charge to be defined as a state variable. In some cases it may not be possible to find the
voltage as a function of charge and the only alternative is to treat charge as a state variable.
Consider a simplified model for the microwave diode shown in Figure 3.2. The corresponding equations
for this model are
i(v) = Is(exp(av) — 1) (3.3)

T™

™

3.4. A NOTE ON THE EVAL ROUTINES IN FREEDA

NAnode

NCathode

Figure 3.2: Simplified schematic for a diode model

and

c;j(v) = Ciwo(l—v/¢)"" + Cagexp (a'v) if v < .8¢ (3.4)
Ct0(.2)77 + Cqo exp (oz’v) ifv>.8¢

where v is the junction voltage. The capacitor voltage ¢; is given by

4 (v) = / 5 (u)du (3.6)

Accurate transient analysis requires g; to be chosen as a state variable. We need v to calculate 1 (v) . Since
it is not possible to solve analytically for v(g), the alternative is to model the diode with two state variables,
namely v and g . The diode equations can now be formulated in two stages. Hence for this case, we will
have two eval functions; evall and eval2 . In evall, we will calculate i(v) and ¢(v), both are which are
functions of voltage v. In this case, the values of ¢(v) are passed to eval2, which automatically calculates
dq/dt. Hence we now have the current through the capacitor as

__da

le=— (3.7)

All the code that performs the actual derivatives is outside the nonlinear model and is handled automatically.
Currently in f REEDATM, only three levels of eval are supported. This means that the highest order of
derivatives possible is two. Most nonlinear elements do not require more than two levels of derivatives. The
entire formulation can be generalized as follows:

stagel : fi(z,zp)
g1(z,2p) (3-8)

stage2 : fa(f1,dg1/dt)
92(f1,dg1/dt) (3.9)

stagen : v(fn-1,dgn-1/dt)
i(fn-1,dgn-1/dt) (3.10)

39

40 CHAPTER 3. ADDING NONLINEAR ELEMENTS TO FREEDA™

3.5 Contributors

The following contributed to this chapter:
Frank P. Hart
Houssam S. Kanj
Nikhil Kriplani
Carlos Christoffersen
Michael Steer.

Appendix A

Object Oriented Programming
Basics

Object oriented programming (OOP) [61] provides a means for abstraction in both programming and design.
OOP does not deal with programming in the sense of developing algorithms or data structures but it must be
studied as a means for the organization of programs and, more generally, techniques for designing programs.

As the primary means for structuring a program or design, OOP provides objects. Objects may model real
life entities, may function to capture abstractions of arbitrary complex phenomena, or may represent system
artifacts such as stacks or graphics. Operationally, objects control the computation. From the perspective
of program development, however, the most important characteristic of objects is not their behavior as such,
but the fact that the behavior of an object may be described by an abstract characterization of its interface.
Having such a characterization suffices for the design. The actual behavior of the object may be implemented
later and refined according to the need. A class specifies the behavior of the objects which are its instances.
Also, classes act as templates from which actual objects may be created. An instance of a class is an object
belonging to that class. A procedure (or function) inside an object is called a method. A message to an
object is a request to execute a method.

Inheritance is the mechanism which allows the reuse of class specifications. The use of inheritance results
in a class hierarchy that, from an operational point of view, decides what is the method that will be selected
in response to a message.

Finally, an important feature of OO languages is their support for polymorphism. This makes it possible
to hide different implementations behind a common interface.

The notion of flow diagram in procedural programming is replaced in OOP by a set of objects which
interact by sending messages to each other.

We will briefly review what are traditionally considered to be features and benefits of OOP. Both infor-
mation hiding (also known as encapsulation) and data abstraction relieve the task of the programmer using
existing OO code, since with these mechanisms the programmer’s attention is no longer distracted by irrele-
vant implementation details. The flexible dispatching behavior of objects that lends them their polymorphic
behavior is due to the dynamic binding of methods to messages. For the C++ language, polymorphic object
behavior is effected by using virtual functions, for which in contrast to ordinary functions, the binding to an
actual function takes place at run time and not at compile time.

Encapsulation promotes modularity, meaning that objects may be regarded as the building blocks of a
complex system. Another advantage often attributed to the OOP is code reuse. Inheritance is an invaluable
mechanism in this respect, since it enables the programmer to modify the behavior of a class of objects
without requiring access to the source code.

Although an object oriented approach to program development indeed offers great flexibility, some of
the problems it addresses are intrinsically difficult and cannot really be solved by mechanisms alone. For
example, it is more likely to achieve a stable modularization when shifting focus from programming to design.

C++ virtual functions [71] can have big performance penalties such as extra memory accesses or the

41

42 APPENDIX A. OBJECT ORIENTED PROGRAMMING BASICS

possibility of an unpredictable branch so pipelines can grind to a halt (note however, that some architec-
tures have branch caches which can avoid this problem). There are several research projects which have
demonstrated success at replacing virtual function calls with direct dispatches. Note however, that virtual
functions are not always bad when it comes to performance. The important questions are: How much code
is inside the virtual function? How often is it used? If there is a lot of code (i.e. more than 25 flops), then
the overhead of the virtual function will be insignificant. But if there is a small amount of code and the
function is called very often (e.g. inside a loop), then the overhead can be critical.

A.1 UML diagrams

The Unified Modeling Language (UML) [84,66] is a language for specifying, visualizing, and constructing
the artifacts of software systems as well as for business modeling. The goal of UML is to become a common
language for creating models of object oriented computer software. It is used here to graphically illustrate
the relationship of classes using what is called a class diagram. A class diagram is a graph of Classifier
elements with connections indicating by their various static relationships (Figure 1.1). (Note that a “class”
diagram may also contain interfaces, packages, relationships, and even instances, such as objects and links.
Perhaps a better name would be “static structural diagram” but “class diagram” is shorter and its use is
well established.) A class is drawn as a solid-outline rectangle with 3 compartments separated by horizontal
lines. The top name compartment holds the class name and other general properties of the class (including
stereotype); the middle list compartment holds a list of attributes; the bottom list compartment holds a list
of operations. Either or both of the attribute and operation compartments may be suppressed. A separator
line is not drawn for a missing compartment. If a compartment is suppressed, no inference can be drawn
about the presence or absence of elements in it.

Each instance of type Element, for example, seems to contain an instance of type ElementData.
This class relationship is indicated by the joining line. The relationship is composition — indicated by the
solid diamond symbol. The arrowhead denotes that the relationship is navigable in only one direction, i.e.,
ElementData does not know anything about Element. The inheritance relationship in UML is depicted
by the triangular arrowhead and points to the base class. A line from the base of the arrowhead connects it
to the derived classes, e.g. Element is derived from NetListItem.

Other forms of containment do not have whole/part implications and are called association relationships
indicated by a line drawn between the participating classes. (This relationship will almost certainly be
implemented using pointers unless it is very weak.) If the relationship between two classes is very weak
(i.e. very little data is shared) then a dashed line is used. For example, in Figure 1.1, ElementManager
somehow depends upon Diode. (In C++ the weak relationship is almost always implemented using an
#include.)

An illustration showing examples for the notation is given in Figure A.1.

A.1.1 Collaboration Diagrams

The collaboration diagram [84] is part of the Unified Modeling Language (UML), a language for specifying,
visualizing, and constructing the artifacts of software systems as well as for business modeling. The UML
represents a collection of ‘best engineering practices’ that have proven successful in the modeling of large
and complex systems. Behavior is implemented by sets of objects that exchange messages within an overall
interaction to accomplish a purpose. To understand the mechanisms used in a design, it is important to
see only the objects and the messages involved in accomplishing a purpose or a related set of purposes,
projected from the larger system of which they are part for other purposes. Such a static construct is called
a collaboration. A collaboration is a set of participants and relationships that are meaningful for a given set
of purposes. The identification of participants and their relationships does not have global meaning. In the
collaboration diagram, each box represents an object (in this case, either a terminal or an element). The
lines between boxes represent associations and the arrows are messages. The order in which messages are
sent is shown by the numbers.

A.2. CONTRIBUTORS

Used

Had By Reference

<<stereotype>>
Base Class

Derived 1

Had By Value

Derived 2

Figure A.1: Notation for a class diagram.

A.2 Contributors

The following contributed to this chapter

Carlos Christoffersen

Michael Steer.

43

44

APPENDIX A. OBJECT ORIENTED PROGRAMMING BASICS

Appendix B

Release Notes

Version 1.0.0
Initial release.

Version 1.1.0

Noted that FREEDA" “'is now a registered trademark in the front matter.

Added Section C on supporting software libraries.

Minor corrections were made to Section 2.

Major changes and additions were made to Section 3, including new listing formatting, details on create-
Tape(), relationship between terminals and state variables, and more.

Added Appendix D on the Netlist Format.

45

46

APPENDIX B. RELEASE NOTES

Appendix C

Support Libraries

A large number of support libraries are available (many of them freely) and some of these are used in
Transim. The various libraries, which should be of general interest to the microwave modeling community,
are described below.

C.1 Solution of Sparse Linear Systems (Sparse, SuperLU)

Sparse 1.81 [74] is a flexible package of subroutines written in C used to numerically solve large sparse
systems of linear equations. The package is able to handle arbitrary real and complex square matrix equa-
tions. Besides being able to solve linear systems, it is also able to quickly solve transposed systems, find
determinants, and estimate errors due to ill-conditioning in the system of equations and instability in the
computations. Sparse also provides a test program that is able to read matrix equation from a file, solve
it, and print useful information (such as condition number of the matrix) about the equation and its solu-
tion. Sparse was originally written for use in circuit simulators and is well adapted to handling nodal- and
modified-nodal admittance matrices.

SuperL U? is used in the wavelet and time marching transient analyses. It contains a set of subroutines to
numerically solve a sparse linear system Ax = b. It uses Gaussian elimination with partial pivoting (GEPP).
The columns of A may be preordered before factorization; the preordering for sparsity is completely separate
from the factorization. SuperLU is implemented in ANSI C. It provides support for both real and complex
matrices, in both single and double precision.

C.2 Vectors and Matrices (MV++, MTL)

Most of the vector and matrix handling in FREEDA™ " uses MV++% [73]. This is a small set of vector
and simple matrix classes for numerical computing written in C4++. It is not intended as a general vector
container class but rather designed specifically for optimized numerical computations on RISC and pipelined
architectures which are used in most new computer architectures. The various MV++ classes form the
building blocks of larger user-level libraries. The MV++ package includes interfaces to the computational
kernels of the Basic Linear Algebra Subprograms package (BLAS) which includes scalar updates, vector sums,
and dot products. The idea is to utilize vendor-supplied, or optimized BLAS routines that are fine-tuned
for particular platforms.

The Matrixz Template Library (MTL)4 is a high-performance generic component library that provides
comprehensive linear algebra functionality for a wide variety of matrix formats. It is used in the wavelet

Thttp:/ /www.netlib.org/sparse/
2http://www.nersc.gov/xiaoye/SuperLLU/
3http://math.nist.gov/mv-++/
4http://www.lsc.nd.edu/research/mtl/

47

48 APPENDIX C. SUPPORT LIBRARIES

and time marching transient analyses.

As with STL, MTL uses a five-fold approach, consisting of generic functions, containers, iterators, adap-
tors, and function objects, all developed specifically for high performance numerical linear algebra. Within
this framework, MTL provides generic algorithms corresponding to the mathematical operations that define
linear algebra. Similarly, the containers, adaptors, and iterators are used to represent and to manipulate
matrices and vectors.

C.3 Solution of Nonlinear Systems (NNES)

Nonlinear systems of equations in f REEDA ™ are solved using the NNES® [59] library. This package is
written in Fortran and provides Newton and quasi-Newton methods with many options including the use
of analytic Jacobian or forward, backwards or central differences to approximate it, different quasi-Newton
Jacobian updates, or two globally convergent methods, etc. This library is used through an interface class
(NLSInterface), so it is possible to install a different routine to solve nonlinear systems if desired by just
replacing the interface (four different nonlinear solvers have already been used). The Fortran routine NLEQ1
(Numerical solution of nonlinear (NL) equations (EQ)®) can also be used as a compile option.

C.4 Fourier Transform (FFTW)

Fourier transformation is implemented in fREEDATMusing the FETW” library [52]. FFTW is a C sub-
routine library for computing the Discrete Fourier Transform (DFT) in one or more dimensions, of both
real and complex data, and of arbitrary input size. Benchmarks, performed on a variety of platforms show
that FFTW’s performance is typically superior to that of other publicly available FFT software. More-
over, FFTW’s performance is portable: the program performs well on most computer architectures without
modification.

C.5 Automatic Differentiation (Adol-C)

Most nonlinear computations require the evaluation of first and higher derivatives of vector functions with
m components in n real or complex variables [72]. Often these functions are defined by sequential evaluation
procedures involving many intermediate variables. By eliminating the intermediate variables symbolically, it
is theoretically always possible to express the m dependent variables directly in terms of the n independent
variables. Typically, however, the attempt results in unwieldy algebraic formulae, if it can be completed
at all. Symbolic differentiation of the resulting formulae will usually exacerbate this problem of expression
swell and often entails the repeated evaluation of common expressions.

An obvious way to avoid such redundant calculations is to apply an optimizing compiler to the source
code that can be generated from the symbolic representation of the derivatives in question. Exactly this
approach was investigated by Speelpenning during his Ph.D. research [75] at the University of Illinois from
1977 to 1980. Eventually he realized that at least in the cases n = 1 and m = 1, the most efficient
code for the evaluation of derivatives can be obtained directly from the evaluation of the underlying vector
function. In other words, he advocated the differentiation of evaluation algorithms rather than formulae. In
his dissertation he made the particularly striking observation that the gradient of a scalar-valued function
(i.e. m = 1) can always be obtained with no more than five times the operations count of evaluating the
function itself. This bound is completely independent of n, the number of independent variables, and allows
the row-wise computation of Jacobians for at most 5m times the effort of evaluating the underlying vector
function.

Shttp://www.netlib.org/opt/

6Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB). Contact: Lutz Weimann, ZIB, Division Scientific
Computing, Department Scientific Software, e-mail: weimann@zib.de

Thttp:/ /www.fFftw.org

C.5. AUTOMATIC DIFFERENTIATION (ADOL-C)

Given a code for a function F': R” — R™, automatic differentiation (AD) uses the chain rule successively
to compute the derivative matrix. AD has two basic modes, forward mode and reverse mode [76]. The
difference between these two is the way the chain rule is used to propagate the derivatives.

Element Initialization - AD block

AdolcElement::createTape()

|

. it
Diode::eval() L—[Diode Function Tape)

——————————————————————————————————————— ! read

Adol-C Library

Call for function or derivative evaluation

3 FreqDomainSV AdolcElement::svHB() :
| FFT :
'| Time Derivation 1
| Time delay AdolcElement::svHB_deriv() |

Harmonic Balance

TimeDomainSV [AdolcElement::svTran()

Time delay «: AdolcElement::svTran_deriv() ;

|
|
|
|
|
1
'| Time Derivation T T T Tt TTTTTTooe
|
|
|
|
|
|
|
|

Figure C.1: Implementation of automatic differentiation.

A versatile implementation of the AD technique is Adol-C® [72], a software package written in C and
C++. The numerical values of derivative vectors (for example, required to fill a Jacobian in Harmonic
Balance analysis [2], see Figure C.1) are obtained free of truncation errors at a small multiple of the run
time required to evaluate the original function with little additional memory required. It is important to
note that AD is not numerical differentiation and the same accuracy achieved by evaluating analytically
developed derivatives is obtained.

The eval () method of the nonlinear element class is executed at initialization time and so the operations
to calculate the currents and voltages of each element are recorded by Adol-C in a tape which is actually
an internal buffer. After that, each time that the values or the derivatives of the nonlinear elements are
required, an Adol-C function is called and the values are calculated using the tapes. This implementation

8http://www.math.tu-dresden.de/ adol-c/

49

50 APPENDIX C. SUPPORT LIBRARIES

is efficient because the taping process is done only once (this almost doubles the speed of the calculation
compared to the case where the functions are taped each time they are needed). When the Jacobian is
needed, the corresponding Adol-C function is called using the same tape. We have tested the program
with large circuits with many tones, and the function or Jacobian evaluation times are always very small
compared with the time required to solve the matrix equation (typically some form of Newton’s method)
that uses the Jacobian. The conclusion is that there is little detriment to the performance of the program
introduced by using automatic differentiation. However the advantage in terms of rapid model development
is significant. The majority of the development time in implementing models in simulators, particularly
harmonic balance simulators, is in the manual development of the derivative equations. Unfortunately the
determination of derivatives using numerical differences is not sufficiently accurate for any but the simplest
circuits. With Adol-C full ‘analytic’ accuracy is obtained and the implementation of nonlinear device models
is dramatically simplified. From experience the average time to develop and implement a transistor model is
an order of magnitude less than deriving and coding the derivatives manually. Note that time differentiation,
time delay and transformations are left outside the automatic differentiation block. The calculation speed
achieved is approximately ten times faster than the speed achieved by including time differentiation, time
delay and transformations inside the block.

C.6 Contributors

The following contributed to this chapter
Carlos Christoffersen

Michael Steer.

Appendix D

Netlist Format

The netlist input of TRANSIM is almost compatible to Spice. There are a number of additional features
and these are documented below. The focus of the additions is to facilitate the addition of new models,
allow variables, and support hierarchical descriptions of coupling in a network.

D.1 STRUCTURE OF TRANSIM’S NETLIST

The transim netlist mainly consists in a title, an analysis specification, a list of connected elements’, and a
list of output commands.

D.1.1 LEXICAL

TRANSIM’s grammatical rules are very similar to those of spice:

whitespace blank
a newline followed immediately by a + sign. a tab
a vertical tab
a newpage

identifier A character sequence beginning with an Alphabetic character
A—Za—z

variables A variable must begin with an alphabetic character or a $ followed by alphanumeric characters

or ‘_or ‘)’

Example:

HEIGHT
\$height
height.1_1

Note that HEIGHT and height are identical as case is not preserved.

strings Either as an identifier (a continuous sequence of alphanumeric characters or enclosed within double
quotes.
The following special escaped characters are allowed in strings defined within double quotes.

"To include a double quote in a string.

lelement: a model of a physical component of a network.

51

52 APPENDIX D. NETLIST FORMAT

nTo indicate a newline
Examples:

gate
"VOLTAGE WAVEFORM"

Note: Strings may continue across lines using the Spice continuation syntax:

"VOLTAGE
+ WAVEFORM"

or simply by continuing across a line as in

"VOLTAGE
WAVEFORM"

numbers “E” or “e” to indicate exponent.
dotted command A “.” folowed by alphabetic characters

If A line feed or cariage return.

CAPITALIZATION

The case of identifiers and keywords is ignored in TRANSIM netlists. The significance of case is retained
only within quoted strings, and in that case it is always retained. Internally characters are mapped to lower
case.

D.1.2 CONTINUATION OF LINE

A line beginning with a plus sign is considered to be the continuation of the previous one.

D.1.3 TITLE LINE
%x Unit Cell Folded Slot Antenna *

As in Spice, the first line of the netlist file is the title and does not contain commands.

D.1.4 COMMENTS

* Local reference nodes

As in Spice, comment lines begin with an asterisk.

D.1.5 .options
Used to set up quantities similar to spice syntax. The general syntax is
.options <identifier> = <value>

All identifiers set in a .options card are treated as a variable. value may be an number or a previously defined
variable.
Some variables are preset:

D.1. STRUCTURE OF TRANSIM’S NETLIST

variable default

defl OPTIONS_DEFAULT_DEFL
defw OPTIONS_DEFAULT_DEFW
defad OPTIONS_DEFAULT_DEFAD
defas OPTIONS_DEFAULT_DEFAS
tnom OPTIONS_DEFAULT_TNOM

numdgt OPTIONS_DEFAULT_NUMDGT
cptime OPTIONS_DEFAULT_CPTIME
limpts OPTIONS_DEFAULT_LIMPTS

itl1 OPTIONS_DEFAULT_ITL1

itl2 OPTIONS_DEFAULT_ITL2

itl4 OPTIONS_DEFAULT_ITL4

itld OPTIONS_DEFAULT_ITL5
reltol OPTIONS_DEFAULT_RELTOL
trtol OPTIONS_DEFAULT_TRTOL

abstol OPTIONS_DEFAULT_ABSTOL
chgtol OPTIONS_DEFAULT_CHGTOL

vntol OPTIONS_DEFAULT_VNTOL
pivrel OPTIONS_DEFAULT_PIVREL
gmin OPTIONS_DEFAULT_GMIN

The defaults are defined in spice.h

D.1.6 .model

.model c_line tlinp4 (zOmag=75.00 k=7 fscale=1.el0
+ alpha = 59.9)

Each .model is a statement that associates a name (<model name>) with a list of parameter values (<param-
list>). The parameter names given must be the names of parameters of the element specified after the model
keyword. Thus, alpha and zOmag must be parameters of t1linp4 in the above example.

Further, the values assigned to parameters must be of an appropriate type. The parser goes to some
lengths to coerce types where the result is sensible (i.e., if you give an integer value “1” to a parameter of
float type, the parameter will be assigned the floating-point value “1.0”). However, you can’t assign string
values to float parameters, or vice-versa.

The .model statements define the default characteristics of the different physical elements (“models”) in
a network.

The syntax is as for spice

.model <model name> <type name> ([<parameter name> = <value>]*)

Here, <model name > is an identifier by which the model is referred to. <type mame> is the physical
element name that the model refers to. the parameter name must be a valid parameter for the element
(indicated by <type name>) referred to.

Any number of models may be specified for a single element.

D.1.7 Analysis Specification
.ac start = 3.6GHz stop = 4.8GHz n_freqs = 7

This line consists in a dot followed by the analysis name and a list of parameters. See the analysis catalog
for a list of analysis and the description of the paramenters.
Note that 4.8GHz is equivalent to 4.8e9 or 4.8g. This is the same as in Spice.

D.1.8 Element Specification

nport:cpw_2 10 20 100 200 filename = "unitcell.yp"

53

54 APPENDIX D. NETLIST FORMAT

Elements are specified with the element type name (nport in this example) followed by a colon and the
element instance name. Then a list of nodes (or terminals) to which the element is connected followed
by a paramenter list. See the element catalog for a list of available elements and the description of the
paramenters.

The terminals can be named using integer numbers or strings. When using strings, they must be enclosed
in quotes.

Regular passive elements (R, L and C) also support the standard Spice syntax with the following additions
common to all elements in Transim:

1. A .model specification is allowed for all elements.
2. Anything that can appear in a .model specification can be included in the specification of the element.

3. If a parameter is not specified either through an element specification or a .model specification then
the default parameters for that model will apply to this element.

D.1.9 END OF NETLIST

Every netlist must finish with a .end control card.

D.1.10 SUBCIRCUITS

The subcircuit definition and instantiation is pretty much as in Spice. The definition may appear after or
before the instatiation in the netlist. Node names inside the subcircuit are local to the subcircuit. The
following is an example for a three-terminal subcircuit.

.subckt era6 1 5 "gndl"
(subcircuit definition)

.ends

xampl 10 50 O era6

The name of the subcircuit instance must begin with x.

D.2 OUTPUT CONTROL

Transim has an interpretive output language which uses a reverse polish notation syntax. The operators
operate on a stack and as an operation is performed zero or more arguements are consumed by an opertor.
This is an extremely powerful way of controlling output.

OuUTPUT COMMANDS

.out write ((<qualifier> <value>*)* <operator>)* in <filename>

or

.out plot ((<qualifier> <value>*)* <operator>)* [[<gnuplotPostambleScript>] <gnuplotPreambleScript>]
in <filename>

D.2. OUTPUT CONTROL

or

.out system <string>

D.2.1 WRITING

.out write ((<qualifier> <value>*)* <operator>)* in <filename>

The write command writes what is left on the stack into the file filename.

EXAMPLE
.out write term 4 vt in "4v.out"

This writes the time domain voltage at terminal 4 using the file 4v.out as an output file.

D.2.2 PLOTTING

.out plot ((<qualifier> <value>*)* <operator>)* [[<gnuplotPostambleScript>] <gnuplotPreambleScript>]
in <filename>

The plot command writes what is left on the stack into the file filename and initiates a plot. The file can be
plotted interactively using the Transim Output Viewer. Also, a file named <filename>.cmd is created. This
file is a gnuplot [?] script file that plots the desired data. The Scripts are optional strings and are used to
send additional commands to the gnuplot program.

<gnuplotPreambleScript> is a string of semicolon delineated gnuplot commands prior to the plot command
which is automatically issued.

<gnuplotPostambleScript> is a string of semicolon delineated gnuplot commands after the plot command.

If the option gnuplot is present in the .options card, the gnuplot program will be called automatically
by Transim. Note that this is generally not needed when using the Output Viewer.

Example

EXAMPLE
.out plot term 4 vt in "4v.out"

There are no script commands here. This plots the time domain voltage at terminal 4 using the file 4v.out
as an output file. This functions as both a write and a plot.

D.2.3 RUNNING A SYSTEM COMMAND

.out system <string>

Use this to run the string as a command to the operating system.

EXAMPLE
.out system "echo Hello"

Prints “Hello” on the screen.

D.2.4 NOMENCLATURE

The following nomenclature is used in describing the output operators.

56 APPENDIX D. NETLIST FORMAT

type description
scalar numeric types

integer

floating-point

real (integer or floating-point)

complex

scalar (integer, floating-point or complex)

®» o 3 s s

scalar and mixed numeric types

fv floating-point vector

cv complex vector

v floating-point or complex vector

fsv floating-point scalar or vector

csv complex scalar or vector

sv scalar or vector (any)

prom an appropriately-promoted numeric type
-z (suffix to vector types) x data required

other types

any any type
string character string

var variable name
file data file
func function pointer

D.2.5 QUALIFIERS

type description
qualifiers (network types)

term terminal (or node)
element circuit element

D.2.6 Operators

OPERATORS

General operators

GENERAL OPERATORS

D.2. OUTPUT CONTROL

operator function argument(s) result
dup duplicate object any same
get get element of vector arg:v s
index:s
put modify element of vector arg:v v
index:1
val:s
stripx remove x data VT v
pack concatenates last vz’s on stack variable number m
of vz
system execute shell command string none

D.2.7 Network Operators

vf complex freq. domain voltage vector at a ter- term cv
minal

if complex freq. domain current vector at a ter- term cv
minal

xf complex freq. domain state variable vector term cv
at a terminal

vt time domain voltage vector at a terminal term f

it time domain current vector at a terminal term fo

ut time domain voltage vector at an element elem fo
port

RPN ARITHMETIC OPERATORS

Arithmetic Operators for reverse polish notation e.g. 3 4 add = 7

add addition S prom
sv

sub subtraction SV prom
sV

mult multiplication sV prom
sV

div division sv prom
sv

real real part csv fsv

imag imaginary part csv fsv

mag magnitude csv fsv

abs absolute value or magnitude) fsv

contphase continuous phase csv fsv

prinphase principal value phase csv fsv

conj complex conjugate csv csv

neg additive inverse (negative) sv sv

recip reciprocal sv sV

D.2.8 Conventional arithmetic operators

CONVENTIONAL ARITHMETIC OPERATORS Conventional Arithmetic Operators e.g. 3 + 4 = 7 Not
fully implemented. Do not use and reserved for future expansion.

58

k%

addition
subtraction
multiplication
division

poer

poer

Mathematical operators

MATHEMATICAL OPERATORS

db

db10
rad2deg
deg2rad
minlmt

maxlmt

diff
deriv
sum
integ

dB (201og,,)

dB applied to power (10log;,)
convert radians to degrees
convert degrees to radians
limit the minimum value

limit the maximum value

differences
derivative
sums
integral

Signal processing operators

SIGNAL PROCESSING OPERATORS

Sv
Sv
SU
Sv
Sv
SU
Sv
Sv
SU
Sv
Sv
Sv

sV
sV

fsv

fsv
arg:fsv
arg:fsv
maz:f
fsv

fsv

fsv

fsv

APPENDIX D.

prom
prom
prom
prom
prom

prom

fsv
fsv
fsv
fsv
fsv

fsv
fsv
fsv
fsv

NETLIST FORMAT

D.3. EXAMPLE: SIMULATION OF A FOLDED SLOT ANTENNA

smpltime current analysis timebase as x and y of result none fo
sweepfrq current analysis sweep frequencies as x andy mone fo
of result
smplcvt interpolate signall over timebase of signal2 signall:v VT
stgnal2:vz
sweepcvt interpolate frq1 over sweep frequencies of frq2 frql:v VT
frq2:vx
maketime create timebase starting at ¢t = 0 in x andy tmax:r VT
of result pts:i
makesweep create sweep frequencies starting at f =0in fmaz:r vT
x and y of result pts:i
fft FFT (argument should have 2k points) timedata:fv cv
invfft inverse FFT (argument should have 28 — 1 frgdata:cv fo
points)
cconv real circular (FFT) convolution with zero signall:fv fu
padding signal2:fv
upcconv unpadded real circular (FFT) convolution signall:fu fo
signal2:fv
sconv slow (time-domain) real convolution signall:fv fu
signal?2:fv
fconv fast (approximate) real convolution signall:fv fu
signal2:fv
lpbwfrq lowpass Butterworth filter frequency re- frquec:vx cvx
sponse corner:f
order:i

D.3 EXAMPLE: SIMULATION OF A FOLDED SLOT AN-
TENNA

The netlist format is illustrated using an example. This example uses local reference nodes. For a discussion
of the local reference node concept see chapter ?7?7. Transim provides the local references as a convenience
tool, but it is still possible to treat circuits in a conventional way using the node “0” or “gnd” as a global
reference.

EM modeling yields a port-based y parameters of the antennas at each frequency of interest. The transfer
of data between the EM and circuit simulators (typically a file) includes a header with port grouping
information (a port grouping includes terminals associated with a specific local reference node). This is
required by the circuit simulator in order to expand the port-based matrix into nodal form and also to check
the connectivity of the spatially-distributed circuit.

Below is shown the data file for this example. Each port belong to a different group, so the element has
four terminals. After reading the header the circuit simulator knows the number of elements of the matrix
and the port number and local reference corresponding to each row and column of the matrix.

port:group

1:1

1:2

GHZ Y RI R 50

4

0.00355603 -0.0233196
-0.00121905 -0.00496212
-0.00121905 -0.00496212
0.00355603 -0.0233196

The rest of the file consist in a list of frequencies and the associated matrix elements in complex form.

59

60 APPENDIX D. NETLIST FORMAT

The parser provides several facilities such as the .model statement support for any element type and a
complete reverse polish notation calculator for the output data. The corresponding netlist is shown below.

**x Unit Cell Folded Slot Antenna **x*
.ac start = 3.6GHz stop = 4.8GHz n_freqs =7

* Local reference nodes
.ref 100
.ref 200

* CPW structure
nport:cpw_2 10 20 100 200 filename = "unitcell.yp"

* Transistor small signal model
nport:amplifier 1 2 0 filename = "feedback_ne3210s1.yp"

* Field excitation
gridex:iin 10 100 20 200 ifilename = "unitcell.i"
+ efilename = "dummy.e"

* current meters
vsource:ampl 10 11
vsource:amp2 20 22

* CPW Transmission lines

.model fsal cpw (s=.369m w=1m t=10u er=10.8 tand=.001)
cpw:tl 11 100 1 O model="fsal" length=8.5m

cpw:t2 22 200 2 O model="fsal" length=17.5m

.out write element "vsource:ampl" O if in "il.out"
.out write element "vsource:amp2" O if in "i2.out"

* Plot magnitude of current gain
.out plot element "vsource:amp2" O if element

+ "vsource:ampl" O if div mag db in "igain.out"

* Plot magnitude of voltage gain
.out plot term 20 vf term 10 vf div mag db in "gain.out"

.end

Bibliography

(1]

[7]

(8]

[10]
[11]
[12]

[13]

[14]

[15]

M. B. Steer, J. F. Harvey, J. W. Mink, M. N. Abdulla, C. E. Christoffersen, H. M. Gutierrez, P. L. Heron,
C. W. Hicks, A. I. Khalil, U. A. Mughal, S. Nakazawa, T. W. Nuteson, J. Patwardhan, S. G. Skaggs,
M. A. Summers, S. Wang, and A. B. Yakovlev, “Global modeling of spatially distributed microwave
and millimeter-wave systems,” IEEE Trans. Microwave Theory Tech., June 1999, pp. 830-839.

C. E. Christoffersen, M. B. Steer and M. A. Summers, “Harmonic balance analysis for systems with
circuit-field interactions,” 1998 IEEE Int. Microwave Symp. Dig., June 1998, pp. 1131-1134.

M. B. Steer, Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits, ECE603
class notes, August 15, 1996.

K. S. Kundert, J. K. White and A. Sangiovanni-Vincentelli, Steady-state methods for simulating analog
and microwave circuits, Boston, Dordrecht, Kluwer Academic Publishers, 1990.

V. Rizzoli, A. Lipparini, A. Costanzo, F. Mastri, C. Ceccetti, A. Neri and D. Masotti, “State-of-the-Art
Harmonic-Balance Simulation of Forced Nonlinear Microwave Circuits by the Piecewise Technique,”
IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 1, Jan 1992.

M. Valtonen and T. Veijola, “A microcomputer tool especially suited for microwave circuit design in
frequency and time domain,” Proc. URSI/IEEE National Convention on Radio Science, Espoo, Finland,
1986, p. 20,

M. Valtonen, P. Heikkild, A. Kankkunen, K. Mannersalo, R. Niutanen, P. Stenius, T. Veijola and
J. Virtanen, “APLAC - A new approach to circuit simulation by object orientation,” 10th European
Conference on Clircuit Theory and Design Dig., 1991.

K. Mayaram and D. O. Pederson, “CODECS: an object-oriented mixed-level circuit and device simu-
lator,” 1987 IEEE Int. Symp. on Circuits and Systems Digest, 1987, pp 604—-607.

A. Davis, “An object-oriented approach to circuit simulation,” 1996 IEEE Midwest Symp. on Circuits
and Systems Dig., 1996, pp 313-316.

B. Melville, P. Feldmann and S. Moinian, “A C++ environment for analog circuit simulation,” 1992
IEEFE Int. Conf. on Computer Design: VLSI in Computers and Processors.

P. Carvalho, E. Ngoya, J. Rousset and J. Obregon, “Object-oriented design of microwave circuit simu-
lators,” 1993 IEEE MTT-S Int. Microwave Symp. Digest, June 1993, pp 1491-1494.

A. 1. Khalil and M. B. Steer “Circuit theory for spatially distributed microwave circuits,” IEEE Trans.
on Microwave Theory and Techn., Vol. 46, Oct. 1998, pp 1500-1503.

M. Ozkar, Transient Analysis of Spatially Distributed Microwave Circuits Using Convolution and State
Variables, M. S. Thesis, Department of Electrical and Computer Engineering, North Carolina State
University.

A. R. Djordjevic and T. K. Sarkar, “Analysis of time response of lossy multiconductor transmission line
networks,” IEEE Trans. on Microwave Theory and Techn., Vol. MTT-35, Oct. 1987, pp. 898-908.

D. Winkelstein, R. Pomerleau and M. B. Steer, “Transient simulation of complex, lossy, multi-port
transmission line networks with nonlinear digital device termination using a circuit simulator,” Conf.
Proc. IEEE SOUTHEASTCON, Vol. 3, pp. 1239-1244.

61

62 BIBLIOGRAPHY

[16] T. J. Brazil, “Causal convolution—a new method for the transient analysis of linear systems at mi-
crowave frequencies,” IEEE Trans. on Microwave Theory and Techn., Vol. 43, Feb. 1995, pp. 315-23.

[17] M. S. Basel, M. B. Steer and P. D. Franzon, “Simulation of high speed interconnects using a convolution-
based hierarchical packaging simulator,” IEEE Trans. on Components, Packaging, and Manufacturing
Techn., Vol. 18, February 1995, pp. 74-82.

[18] J. E. Schutt-Aine and R. Mittra, “Nonlinear transient analysis of coupled transmission lines,” IEEE
Trans. on Circuits and Systems, Vol. 36, Jul. 1989, pp. 959-967.

[19] P. Stenius, P. Heikkild and M. Valtonen, “Transient analysis of circuits including frequency-dependent
components using transgyrator and convolution,” Proc. of the 11th European Conference on Circuit
Theory and Design, Part 11, 1993, pp. 1299-1304.

[20] R. Griffith and M. S. Nakhla, “Mixed frequency/time domain analysis of nonlinear circuits,” IEEE
Trans. on Computer Aided Design, Vol.11, Aug. 1992, pp. 1032—43.

[21] P. K. Chan, Comments on “Asymptotic waveform evaluation for timing analysis,” IFEE Trans. on
Computer Aided Design, Vol. 10, Aug. 1991, pp. 1078-79.

[22] M. Celik, O. Ocali, M. A. Tan, and A. Atalar, “Pole-zero computation in microwave circuits using
multipoint Padé approximation,” IEEE Trans. on Circuits and Systems, Jan. 1995, pp. 6-13.

[23] E. Chiprout and M. Nakhla, “Fast nonlinear waveform estimation for large distributed networks,” 1992
IEEE MTT-S Int. Microwave Symp. Digest, Vol.3, Jun. 1992, pp. 1341-1344.

[24] R. J. Trihy and Ronald A. Rohrer, “AWE macromodels for nonlinear circuits,” Proceedings of the 36th
Midwest Symposium on Circuits and Systems, Vol. 1, Aug. 1993, pp. 633—636.

[25] W. T. Beyene and J. E. Schutt-Aineé, “Efficient Transient Simulation of High-Speed Interconnects
Characterized by Sampled Data”, IEEE Trans. on Components, Packaging and Manufacturing Techn.
— Part B, Vol. 21, No. 1, Feb. 1998, pp. 105-114.

[26] D. Borisovich and J. E. Schutt-Aineé, “Optimal Transient Simulation of Transmission Lines,” IEEE
Trans. on Circuits and Systems—I: Fundamental Theory and Applications, Vol. 43, No. 2, Feb. 1996,
pp. 110-121.

[27] W. Leung and F. Chang, “Transient analysis via fast wavelet-based convolution,” 1995 ISCAS Symp.
Digest, Vol. 3, pp. 1884-1887, 1995.

[28] W. Leung and F. Chang, “Wavelet-based waveform relaxation simulation of lossy transmission lines,”
1996 ISCAS Symp. Digest, Vol. 4, pp. 739-742, 1996.

[29] A. Al-Rawi and M. Devaney, “Wavelets and power system transient analysis,” 1998 IEEE Instr. and
Meas. Techn. Conf. Digest, Vol. 2 , pp. 1331-1334, 1998.

[30] T. Hisakado and K. Okumura, “Steady states prediction in nonlinear circuit by wavelet transform,”
1999 ISCAS Symp. Digest, 1999.

[31] C. M. Arturi, A. Gandelli, S. Leva, S. Marchi and A. P. Morando, “Multiresolution analysis of time-
variant electrical networks,” 1999 ISCAS Symp. Digest, 1999.

[32] W. Cai and J. Wang, “Adaptive multiresolution collocation methods for initial boundary value problems
of nonlinear PDEs,” SIAM J. Numer. Anal., Vol. 33, No. 3, pp. 937-970, June 1996.

[33] D. Zhou, N. Chen and W. Cai, “A fast wavelet collocation method for high-speed VLSI circuit simula-
tion,” 1995 IEEE/ACM ICCAD Symp. Digest, pp 115-122, 1995.

[34] D. Zhou, X. Li, W. Zhang and W. Cai, “Nonlinear circuit simulation based on adaptive wavelet method,”
1997 ISCAS Symp. Digest, Vol. 3, pp. 1720-1723, 1997.

[35] W. Cai and J. Wang, “An adaptative spline wavelet ADI (SW-ADI) method for two-dimensional
reaction-diffusion equations,” J. of Computational Physics, No. 139, pp. 92-126, 1998.

[36] D. Zhou and W. Cai, “A fast wavelet collocation method for high-speed VLSI circuit simulation,” IEEE
Trans. on Circuits and Systems—I: Fundamental Theory and Appl., Vol. 46, pp 920-930, Aug. 1999.

[37] D. Zhou, W. Cai and W. Zhang, “An adaptive wavelet method for nonlinear circuit simulation,” IEEE
Trans. on Circuits and Systems—I: Fundamental Theory and Appl., Vol. 46, pp 931-938, Aug. 1999.

BIBLIOGRAPHY

[38]
[39]
[40]

[41]
[42]

[43]
[44]

[45]

[46]
47)
48]
[49)
50]
51)
[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]
[60]

A. Wenzler and E. Lueder, “Analysis of the periodic steady-state in nonlinear circuits using an adaptive
function base,” 1999 IEEE Int. Symposium on Clircuits and Systems Digest.

R. A. Lippert, T. A. Arias and A. Edelman, “Multiscale computation with interpolating wavelets,” J.
of Computational Physics, No. 140, pp. 278-310, 1998.

A. Graps, “An introduction to wavelets,” IEEE Computational Science and Engineering, Vol. 2, No. 2,
pp- 50-61, Summer 1995.

1. Daubechies, “Ten Lectures on Wavelets,” SIAM Publication, Philadelphia, 1992.

S. Bertoluzza, “An adaptive collocation method based on interpolating wavelets,” Multiscale Wavelet
Methods for Partial Differential Equations, Academic Press, 1997.

P. Debefve F. Odeh and A. E. Ruehli, “Waveform Techniques” Circuit Analysis, Simulation and Design,
North-Holland, 1994.

M. S. Nakhla and J. Vlach, “A Piecewise Harmonic Balance Technique for Determination of Periodic
Response of Nonlinear Systems,” IEEE Trans. on Circuits and Systems, Vol CAS-23, No. 2, Feb 1976.

M. B. Steer, C. Chang and G. W. Rhyne, “Computer-Aided Analysis of Nonlinear Microwave Circuits
Using Frequency-Domain Nonlinear Analysis Tech.: The State of the Art,” Int. Journal of Microwave
and Millimeter-Wave Computer-Aided Engineering, Vol. 1, No. 2, 181-200, 1991.

N. Borges de Carvalho and J. C. Pedro, “Multitone frequency-domain simulation of nonlinear circuits
in large- and small-signal regimes,” IFEE MTT, Vol. 46, no. 12, pp. 2016-2024, 1998.

V. Borich, J. East and G. Haddad, “An efficient Fourier transform algorithm for multitone harmonic
balance,” IEEE Transactions on Microwave Theory and Tech., Vol. 47, no. 2, Feb. 1999, pp 182-188.

J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold,
1994.

T. J. Brazil, “A new method for the transient simulation of causal linear systems described in the
frequency domain,” 1992 IEEE MTT-S Int. Microwave Symp. Digest, June 1992, pp. 1485-1488.

P. Perry and T. J. Brazil, “Hilbert-transform-derived relative group delay,” IEEE Trans. on Microwave
Theory and Techn., Vol 45, Aug. 1997, pt. 1, pp. 1214-1225.

C. E. Christoffersen, S. Nakazawa, M. A. Summers, and M. B. Steer, “Transient analysis of a spatial
power combining amplifier”, 1999 IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp. 791-794.

M. Frigo and S. G. Johnson, FFTW User’s Manual, Massachusetts Institute of Technology, September
1998.

C. Gordon, T. Blazeck and R. Mittra, “Time domain simulation of multiconductor transmission lines
with frequency-dependent losses,” IEEE Trans. on Computer Aided Design of Integrated Circuits and
Systems, Vol. 11, Nov. 1992 pp. 1372-87.

M. G. Case, Nonlinear transmission lines for picosecond pulse, impulse and millimeter-wave harmonic
generation, Ph.D Dissertation, Department of Electrical and Computer Engineering, University of Cal-
ifornia, Santa Barbara, California, U.S.A., 1993.

M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman and K. S. Giboney, “GaAs nonlinear
transmission lines for picosecond pulse generation and millimeter-wave sampling,” IEEE Trans. on
Microwave Theory and Techn., Vol. 39, July 1991, pp. 1194-1204.

H. Shi, C. W. Domier and N. C. Luhmann, “A monolithic nonlinear transmission line system for the
experimental study of lattice solutions,” J. of Applied Physics, Vol 4., August 1995, pp. 2558-64.

Compact Software, Microwave Harmonica Elements Library, (1994).

A. Brambilla, D. D’Amor and M. Pillan, “Convergence improvements of the harmonic balance method,”
Proceedings IEEE Int. Symposium on Circuits and Systems, Vol. 4 1993, Publ. by IEEE, IEEE Service
Center, Piscataway, NJ, USA. p 2482-2485.

R. S. Bain, NNES user’s manual, 1993.
P. J. C. Rodrigues, Computer Aided Analysis of Nonlinear Microwave Clircuits, Artech House, 1998.

63

64 BIBLIOGRAPHY

[61] A. Eliéns, Principles of object-oriented software development, Adison-Wesley, 1995.
[62] R. C. Martin. “The dependency inversion principle,” C++ Report, May 1996.
[63] R. C. Martin, “The Open Closed Principle,” C++ Report, Jan. 1996.
] R. C. Martin, “The Liskov Substitution Principle,” C++ Report, March 1996.
[65] R. C. Martin, “The Interface Segregation Principle,” C++ Report, Aug 1996.
]

[66] R.C. Martin, “UML Tutorial: Part 1 — Class Diagrams,” Engineering Notebook Column, C++ Report,
Aug. 1997.

[67] A. D. Robison, “C++ Gets Faster for Scientific Computing,” Computers in Physics, Vol. 10, pp. 458
462, 1996.

[68] J. R. Cary and S. G. Shasharina, “Comparison of C++ and Fortran 90 for Object-Oriented Scientific
Programming,” Available from Los Alamos National Laboratory as Report No. LA-UR-96-4064.

[69] The Object Oriented Numerics Page, http://oonumerics.org/.

[70] Silicon Graphics, Standard Template Library Programmer’s Guide,
http://www.sgi.com/Technology/STL/.

[71] T. Veldhuizen, Tech. for Scientific C++ - Version 0.3, Indiana University, Computer Science Depart-
ment, 1999. (http://extreme.indiana.edu/ tveldhui/papers/Tech./)

[72] A. Griewank, D. Juedes and J. Utke, “Adol-C: A Package for the Automatic Differentiation of Algo-
rithms Written in C/C++,” ACM TOMS, Vol. 22(2), pp. 131-167, June 1996.

[73] R. Pozo, MV++ v. 1.5a, Reference Guide, National Institute of Standards and Technology, 1997.

[74] K. S. Kundert and A. Songiovanni-Vincentelli, Sparse user’s guide - a sparse linear equation solver,
Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, Calif. 94720,
Version 1.3a, Apr 1988.

[75] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algorithms, Ph.D. thesis
(Under the supervision of W. Gear), Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana-Champaign, I11., January 1980.

[76] T.F. Coleman and G. F. Jonsson, “The Efficient Computation of Structured Gradients using Automatic
Differentiation,” Cornell Theory Center Technical Report CTC97TR272, April 28, 1997

[77] S. M. S. Imtiaz and S. M. El-Ghazaly, “Global modeling of millimeter-wave circuits: electromagnetic
simulation of amplifiers,” IEEE Trans. on Microwave Theory and Tech., vol 45, pp. 2208-2217. Dec.
1997.

[78] C.-N. Kuo, R.-B. Wu, B. Houshmand, and T. Itoh, Modeling of microwave active devices using the
FDTD analysis based on the voltage-source approach, IEEE Microwave Guided Wave Lett., Vol. 6, pp.
199-201, May 1996.

[79] E. Larique, S. Mons, D. Baillargeat, S. Verdeyme, M. Aubourg, P. Guillon, and R. Quere, “Electro-

magnetic analysis for microwave FET modeling,” IEEE microwave and guided wave letters, Vol 8, pp.
41-43, Jan. 1998.

[80] T. W. Nuteson, H. Hwang, M. B. Steer, K. Naishadham, J.W.Mink, and J. Harvey, “Analysis of
finite grid structures with lenses in quasi-optical systems,” IEEE Trans. Microwave Theory Tech., pp.
666-672, May 1997.

[81] M. B. Steer, M. N. Abdullah, C. Christoffersen, M. Summers, S. Nakazawa, A. Khalil, and J. Harvey,

“Integrated electro-magnetic and circuit modeling of large microwave and millimeter-wave structures,”
Proc. 1998 IEEE Antennas and Propagation Symp., pp. 478-481, June 1998.

[82] J. Kunisch and I. Wolff, “Steady-state analysis of nonlinear forced and autonomous microwave cir-
cuits using the compression approach,” Int. J. of Microwave and Millimeter-Wave Computer-Aided
Engineering, Vol. 5, No. 4, pp. 241-225, 1995

[83] T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, The MIT Press, McGraw-
Hill Book Company, 1990.

BIBLIOGRAPHY

[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]
[96]
[97]

(98]

[99]

Rational Software, UML Resources, http://www.rational.com/.

H. S. Tsai, M. J. W. Rodwell and R. A. York, “Planar amplifier array with improved bandwidth using
folded-slots,” IEEE Microwave and Guided Wave Letters, Vol. 4, April 1994, pp. 112-114.

M. B. Steer, M. N. Abdullah, C. Christoffersen, M. Summers, S. Nakazawa, A. Khalil, and J. Harvey,
“Integrated electro-magnetic and circuit modeling of large microwave and millimeter-wave structures,”
Proc. 1998 IEEE Antennas and Propagation Symp., pp. 478-481, June 1998.

M. N. Abdulla, U.A. Mughal, and M B. Steer, “Network Charactarization for a Finite Array of Folded-
Slot Antennas for Spatial Power Combining Application,” Proc. 1999 IEEE Antennas and Propagation
Symp., July 1999.

U. A. Mughal, “Hierarchical approach to global modeling of active antenna arrays,” M.S. Thesis, North
Carolina State University, 1999.

M. A. Summers, C. E. Christoffersen, A. I. Khalil, S. Nakazawa, T. W. Nuteson, M. B. Steer and J. W.
Mink, “An integrated electromagnetic and nonlinear circuit simulation environment for spatial power
combining systems,” 1998 IEEE MTT-S Int. Microwave Symp. Dig., June 1998, pp. 1473-1476.

H. Gutierrez, C. E. Christoffersen and M. B. Steer, “An integrated environment for the simulation
of electrical, thermal and electromagnetic interactions in high-performance integrated circuits,” Proc.
IEEFE 6 th Topical Meeting on Electrical Performance of Electronic Packaging, Sept. 1999.

W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B.
Steer, “Electro-thermal cad of power devices and circuits with fully physical time-dependent thermal
mmodelling of complex 3-d systems,” submitted to the IEEE Trans. on Component and Packaging
Technologies.

W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B. Steer,
“Fully physical, time-dependent thermal modelling of complex 3-dimensional systems for device and
circuit level electro-thermal CAD,” submitted to Semi-Therm XVII, San Jose, March 2001.

W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B. Steer,
“Predictive microwave device design by coupled electro-thermal simulation based on a fully physical
thermal model,” EDMO 2000, Glasgow UK, November 2000.

W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B. Steer,
“Steady-state and transient electro-thermal simulation of power devices and circuits based on a fully
physical thermal model,” THERMINIC 2000 Digest, Budapest, September 2000.

Ptplot. hitp://ptolemy.eecs.berkeley.edu/java/ptplot.
Foty, MOSFET modeling with SPICE: Principles and Practice, Prentice Hall, 1997.

Liu, MOSFET Models for SPICE simulation including BSIM3v3 and BSIM/, John Wiley and Sons,
2001.

H. Shichman and D. Hodges, “Modeling and Simulation of Insulated-Gate Field-Effect Transistor
Switching Circuits,” IEEE J. Sol. St. Circ. vol. 3, pp. 285-289 (1968)

Field Effect Transistors, (ed. by J. Wallmark and H. Johnson), Prentice-Hall, 1966.

[100] Lee, Shur, Fjeldy and Ytterdal, Semiconductor Device Modeling for VLSI: with the AIM-spice circuit

simulator, Prentice Hall, 1993.

[101] Fjeldy, Ytterdal and Shur, Introduction to device modeling and circuit simulation, A Wiley-Interscience

Publication, 1998.

[102] Ron M. Kielkowski, SPICE Practical Device Modeling, McGraw-Hill, Inc., 1995.
[103] M. B. Steer, “Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits,” ECE

718 class notes, 2001.

[104] C. E. Christoffersen, M. Ozkar, M. B. Steer, M. G. Case and M. Rodwell, “State variable-based

transient analysis using convolution,” IEEE Transactions on Microwave Theory and Tech., Vol. 47,
June 1999, pp. 882-889.

65

66 BIBLIOGRAPHY

[105] C. E. Christoffersen and M. B. Steer, “State-variable microwave circuit simulation using wavelets,” to
be published in the IEFEE Microwave and Guided Waves Letters, 2001.

[106] C. E. Christoffersen, U. A. Mughal and M. B. Steer, “Object Oriented Microwave Circuit Simulation,”
Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 10, Issue 3, 2000, pp. 164-182.

[107] C. E. Christoffersen Global modeling of nonlinear microwave circuits, Ph. D. Dissertation, North
Carolina State University, December 2000.

[108] C. E. Christoffersen, “Adding Linear Element to Transim”, April 2001.

[109] A. Griewank, D. Juedes, J. Utke, “Adol-C: A Package for the Automatic Differentiation of Algorithms
Written in C/C++", Version 1.8.2, March 1999.

[110] H. S. Kanj, “Electro-Thermal Resistor Catalog”, June 2001.

[111] A.I. Khalil and M.B. Steer, “Circuit theory for spacially distributed microwave circuits”, IEEE Trans
on Microwave Theory and Technique 46 (1998), 1500-1503.

[112] C. E. Christoffersen and M.B. Steer, “Implementation of the Local Reference Node Concept for Spa-
tially Distributed Circuits”, John Willey & Sons, Inc. Int J RF and Microwave CAE 9: 376-384, 1999.

