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Chapter 1

Introduction

1.1 Overview of fREEDA

fREEDATM is a multiphysics simulator that is based on the use of compact models as used
in circuit simulators. fREEDATM carries a Gnu Public License (GPL) and is available at
http://www.freeda.org.

ifREEDATM is a companion interactive GUI based on the QUCS schematic capture en-
gine see http://qucs.sourceforge.net/ . ifREEDATM uses the Qt R© is a registered trademark
of Trolltech AS in Norway, The United States of America, and other countries worldwide. See
http://trolltech.com/copyright for their copyright restriction and http://trolltech.com/products/qt/licenses
for licensing information. ifREEDATM uses the Open Source Edition of Qt R©.

fREEDATM and ifREEDATM are released under the GPL license and so is open source
software. fREEDATM and ifREEDATM can be sold but developments that are commercial-
ized must be made available as open source software.

The community is welcome to extend the capabilities of f REEDATM particularly model
development. f REEDATMcurrently supports the following analyses: transient (many types
including high dynamic range capability), wavelet transient, harmonic balance, large signal
noise analysis including phase noise, AC, DC. There are a large number of models available
(there are at least 107 but the number grows all the time). There is an extensive support
for true electro-thermal modeling capturing long tail thermal effects. We need to develop
application notes to show how to use all the capabilities. Most of the developments have
been reported in Master;s theses and PhD dissertations at North Carolina State University,
University of Arizona, Queen’s University. Contact Michael Steer at m.b.steer@ieee.org if
you are interested in modifying f REEDATM .

1.2 A Multi-Physics Simulator

A number of concepts are supported that enable multiphysics modeling. The most important
of these are

1. Local reference terminals supplanting universal ground [S13, S14]. (Different physics
can have their own reference. High speed circuits and microwave circuits do not posses a
global ground and so the distributed nature of high-speed circuits is naturally captured.

7



8 CHAPTER 1. INTRODUCTION

2. Energy norm. fREEDATM uses an energy norm in computing solutions [S12, S15].
Each terminal has two quantities potential and flux. This contrasts with the con-
ventional circuit simulator paradigm of solving Kirchoff’s Current Law which only
addresses flux conservation. This solution does not work when there is no flux.

3. fREEDATM uses state-variables and parameterization [S16, S1] so that homotopy tech-
niques do not need to be used to arrive at a solution. For example fREEDA can arrive
at a solution starting from a zero initial guess. The modeling scope is far beyond the
modeling capabilities of SPICE-like simulators. The modeling scope is defined by

y(t) = F




x1(t), . . . , xn(t), dx1(t)
dt

, . . . , dxn(t)
dt

,
d2x1(t)

dt2
, . . . , d2xn(t)

dt2
, d3x1(t)

dt3
, . . . , d3xn(t)

dt3
,

x1(t− τ1), . . . , xn(t− τ1)




where F [] can be nonlinear. Note that rue time-delays are supported.

1. fREEDATM supports distributed circuits using UIUC developed technology to use
frequency-domain characterizations in transient analysis. [S6]

2. Electro-thermal modeling is supported and has been implemented and verified for
microwave integrated circuits. Electro-thermal elements are based on a unique theory
that captures thermal nonlinearities [S7], [S8]

3. It is very easy to write a model in fREEDA. For example. The ekv FET model was
added to fREEDATM in May 2007. This took approximately four weeks with most of
the time spent reverse engineering the ekv model to discover the smoothing algorithms
used (this information was only available with an NDA). Turning the electrical model
into a complete electro-thermal model took six hours. Making changes to the model
takes an almost insignificant amount of time as manual derivatives do not need to be
developed (uses automatic differentiation technology). Model code in fREEDATM uses
is typically 5 to 10% of the code required to implement the model in SPICE. About
90% of . fREEDATM code is off-the-shelf numerical libraries. For example, ADOLC
was modified to suit . fREEDATM as at the time, in 2005, . fREEDATM was regarded
as the most sophisticated implementation of ADOLC.

4. fREEDATM currently supports 150 models, some of the more exotic are fully-physical
models for molecular electronics [S4] and models that capture high-order fileters in
transient analysis [S3].

5. fREEDATM supports many types of analyses including four main transient analyses
each with particular attributes. For example, one has a dynamic range exceeding 140
dB and particularly useful in modeling RFICs. Wavelet transient analysis [S9] uses
wavelet technology albeit somewhat disappointing because of matrix ill-conditioning.
In time this will be addressed and further support multi-physics modeling.
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fREEDAmathrmTM has an input format that is similar to the SPICE input format with
extensions for variables, sweeps, user defined models, and repetitive simulation. The program
provides a variety of output data and plots. The netlist format (including output commands)
is discussed in chapter 2.

The program supports several types of analyses, subcircuit instances, and local refer-
ence nodes. The harmonic balance approach in fREEDA is discussed in chapter ??. The
convolution transient is described in chapter ??.

fREEDATM supports two schematic and layout capture engines. One of these is iFREEDATM

which is based on the QUCS engine and is intricately connected to fREEDATM. iFREEDATM

uses the same code tree as fREEDATM. The other schematic engine is Electric (Editor) of
the Electric VLSI Design System, http://www.staticfreesoft.com fREEDATM also provides
an interactive interface (GUI) called iFREEDA. Both Electric and iFREEDATM support
local reference terminals

fREEDATM and iFREEDATM are available from http://www.freeda.org

fREEDAmathrmTM provides a graphical user interface which includes a netlist editor, a
run manager and a output viewer. Details are given in chapter 6. While this is no longer
distributed with fREEDA it still exists.

fREEDAmathrmTM allows the addition or removal of new circuit elements in a very simple
way. It is designed so that new circuit elements can be coded and incorporated into the
program without modification to the high-level simulator and editor. It is also quite simple
to add a new analysis type. Some insight into the program architecture is given in chapter
??.

1.3 Supported Platforms

fREEDAmathrmTM has been developed using the GNU compilers. All platforms supported
by these compilers should be able to run fREEDAmathrmTM . Most of the program is written
in ANSI C++ using object-oriented techniques, but it also contains off-the-shelf libraries
and routines written in C and FORTRAN. The user’s interface is written in Java.

fREEDAmathrmTM has been compiled and run successfully in Solaris, and HPUX, Linux,
Windows/cygwin with virtually no alteration. The main development environment is linux
but cygwin should work just as well.

1.4 Command Line Options

The syntax for the simulator engine invocation is

freeda <netlist file> [<output file>]
or (on Cygwin) freeda.exe <netlist file> [<output file>]

where <netlist file> is the input file name (normally ended with .net) and <output file> is
the output file name (normally ended with .out). If the output file name is omitted, the
default output name is formed by replacing .net with .out in the input file name, or by
just adding .out if the input file name does not ends with .net.
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When not running a netlist file, fREEDAmathrmTM accepts the following command line
flags:

Flag Description
-a : generate analysis catalog files.
-c, --catalog : generate element catalog files.
-c elementName : generate catalog files for teh element elementName (must be lower case).
-h, --help : get help (this message).
-l, --licence : show license information.
-v, --version : print program version.

fREEDA is self-documenting for analyses and elements. Data is taken from the data
structures for the elements, authors of analyses and elements often provide more extensive
documentations.

1.5 Release Notes

1.5.1 Installation Notes

The installation instructions are located in the file README.install in the src/ directory.

1.5.2 Directory Structure

The simulator assumes the directory structure

• $USER/freeda

• $USER/library (where the libraries reside and not overwritten by new releases)

• $USER/freeda/projects (where the projects reside and not overwritten by new releases)

• $USER/freeda/freeda-x.x (the release)

• ln -s freeda-x.x freeda (soft link to create $USER/freeda/freeda )

• $USER/freeda/freeda/bin

• $USER/freeda/freeda/doc (documentation for this release)

• $USER/freeda/freeda/simulator (top of source code tree for fREEDA and ifREEDA)

• $USER/freeda/freeda/elements (top of source code tree for elements, used in generat-
ing element documentation)

These defaults can be overwritten by environment variables as discussed in Section 1.5.5
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1.5.3 Setting up the Cygwin Environment

1.5.4 Setting Up .bash profile

It is important that users set up the .bash profile correctly. Here is a suitable .bash profile

script. Gets around the problem of spaces in the directory path. This should be added to the
file .bash profile in the login directory. This is where you will go when you launch cygwin.

USER="mbs"

USERNoSpaces="mbs"

export HOME="/$USER"

mount -f -s -b "C:/Documents and Settings/$USER" "/$USERNoSpaces"

export PATH="/$USERNoSpaces/freeda/bin:$PATH"

export HOMEPATH="/$USERNoSpaces"

$FREEDA_HOME="/$USERNoSpaces/freeda"

1.5.5 Environment Variables

Generally the defaults will be fine for freeda and ifreeda users. Environment variables are
available to adapt to the local environment. These environment variables can be set in the
.bash profile file, see Section 1.5.4.
Environment Internal Default
Variable Variable

FREEDA HOME env freeda home $USER/freeda
FREEDA LIBRARY env freeda library $FREEDA HOME/library
FREEDA PROJECTS env freeda projects $FREEDA HOME/projects
FREEDA PATH env freeda path $FREEDA HOME/freeda
FREEDA BIN env freeda bin $FREEDA PATH/bin
FREEDA SIMULATOR env freeda simulator $FREEDA PATH/simulator
FREEDA ELEMENTS env freeda elements $FREEDA SIMULATOR/elements
FREEDA DOCUMENTATION /tmp

env freeda documentation
Documentation developers should set the
variable to $FREEDA PATH/doc

FREEDA WEB DOCUMENTATION http://www.freeda.org/doc
env freeda web documentation
Documentation developers should set the
variable to $FREEDA PATH/doc

FREEDA BROWSER env freeda browser cygstart
default for CygWin, cygstart is not a
browser but works this way in fREEDA as
it uses the registry table to open the ap-
propriate application for a file.

FREEDA BROWSER env freeda browser firefox
default if not CygWin environment.
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1.5.6 Known Bugs

A list of known simulator bugs is located in the file README.bugs in the src/ directory.
Known element model bugs are provided in the element documentation.

1.6 Help

If you need help contact one of the developers or send email to m.b.steer@ieee.org . Several
groups use f REEDATMbut these are early days for f REEDATM so you may have issues that
have not been addressed.



Chapter 2

Netlist Format

The netlist input of fREEDA is almost compatible to Spice. There are a number of additional
features and these are documented below. The focus of the additions is to facilitate the
addition of new models, allow variables, and support hierarchical descriptions of coupling in
a network.

2.1 Structure of fREEDATM’s Netlist

The fREEDA netlist mainly consists in a title, an analysis specification, a list of connected
elements1, and a list of output commands.

2.1.1 Lexical

fREEDAs grammatical rules are very similar to those of spice:

whitespace blank
a newline followed immediately by a + sign. a tab
a vertical tab
a newpage

identifier A character sequence beginning with an Alphabetic character

A− Za− z

variables A variable must begin with an alphabetic character or a $ followed by alphanu-
meric characters or ‘ ’ or ‘.’

Example:

HEIGHT

\$height

1element: a model of a physical component of a network.
13
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height.1_1

Note that HEIGHT and height are identical as case is not preserved.

strings Either as an identifier (a continuous sequence of alphanumeric characters or enclosed
within double quotes.
The following special escaped characters are allowed in strings defined within double
quotes.

"To include a double quote in a string.

nTo indicate a newline

Examples:

gate

"VOLTAGE WAVEFORM"

Note: Strings may continue across lines using the Spice continuation syntax:

"VOLTAGE

+ WAVEFORM"

or simply by continuing across a line as in

"VOLTAGE

WAVEFORM"

numbers “E” or “e” to indicate exponent.

dotted command A “.” folowed by alphabetic characters

lf A line feed or cariage return.

Capitalization

The case of identifiers and keywords is ignored in fREEDATM netlists. The significance of
case is retained only within quoted strings, and in that case it is always retained. Internally
characters are mapped to lower case.

2.1.2 Continuation of Line

A line beginning with a plus sign is considered to be the continuation of the previous one.
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2.1.3 Title Line

*** Unit Cell Folded Slot Antenna ***

As in Spice, the first line of the netlist file is the title and does not contain commands.

2.1.4 Comments

* Local reference nodes

As in Spice, comment lines begin with an asterisk.

2.1.5 .options

Used to set up quantities similar to spice syntax. The general syntax is

.options <identifier> = <value>

All identifiers set in a .options card are treated as a variable. value may be an number or a
previously defined variable.

Preset Options

Some variables are preset:
variable default value
defl OPTIONS DEFAULT DEFL 100× 10−6

defw OPTIONS DEFAULT DEFW 100× 10−6

defad OPTIONS DEFAULT DEFAD 0
defas OPTIONS DEFAULT DEFAS 0
tnom OPTIONS DEFAULT TNOM 27
numdgt OPTIONS DEFAULT NUMDGT 4
cptime OPTIONS DEFAULT CPTIME 1× 106

limpts OPTIONS DEFAULT LIMPTS 201
itl1 OPTIONS DEFAULT ITL1 40
itl2 OPTIONS DEFAULT ITL2 20
itl4 OPTIONS DEFAULT ITL4 10
itl5 OPTIONS DEFAULT ITL5 5000
reltol OPTIONS DEFAULT RELTOL 0.001
trtol OPTIONS DEFAULT TRTOL 7.0
abstol OPTIONS DEFAULT ABSTOL 1× 10−12

chgtol OPTIONS DEFAULT CHGTOL 0.01× 10−12

vntol OPTIONS DEFAULT VNTOL 1× 10−6

pivrel OPTIONS DEFAULT PIVREL 1× 10−13

gmin OPTIONS DEFAULT GMIN 1× 10−12

(For the developer: the defaults are defined in spice.h )
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Control Options

Under Construction.

2.1.6 .model

.model c line tlinp4 ( z0mag=75.00 k=7 fscale=1.e10

+ alpha = 59.9 )

Each .model is a statement that associates a name (<model name>) with a list of parameter
values (<param-list>). The parameter names given must be the names of parameters of the
element specified after the model keyword. Thus, alpha and z0mag must be parameters of
tlinp4 in the above example.

Further, the values assigned to parameters must be of an appropriate type. The parser
goes to some lengths to coerce types where the result is sensible (i.e., if you give an integer
value “1” to a parameter of float type, the parameter will be assigned the floating-point
value “1.0”). However, you can’t assign string values to float parameters, or vice-versa.

The .model statements define the default characteristics of the different physical elements
(“models”) in a network.

The syntax is as for spice

.model <model name> <type name> ([<parameter name> = <value>]*)
Here, <model name > is an identifier by which the model is referred to. <type name> is

the physical element name that the model refers to. the parameter name must be a valid
parameter for the element (indicated by <type name>) referred to.

Any number of models may be specified for a single element.

2.1.7 Analysis Specification

.ac start = 3.6GHz stop = 4.8GHz n freqs = 7

This line consists in a dot followed by the analysis name and a list of parameters. See the
analysis catalog for a list of analysis and the description of the paramenters.

Note that 4.8GHz is equivalent to 4.8e9 or 4.8g. This is the same as in Spice.

2.1.8 Element Specification

nport:cpw 2 10 20 100 200 filename = "unitcell.yp"

Elements are specified with the element type name (nport in this example) followed by a
colon and the element instance name. Then a list of nodes (or terminals) to which the
element is connected followed by a paramenter list. See the element catalog for a list of
available elements and the description of the paramenters.

The terminals can be named using integer numbers or strings. When using strings, they
must be enclosed in quotes.

Regular passive elements (R, L and C) also support the standard Spice syntax with the
following additions common to all elements in fREEDATM:
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1. A .model specification is allowed for all elements.

2. Anything that can appear in a .model specification can be included in the specification
of the element.

3. If a parameter is not specified either through an element specification or a .model

specification then the default parameters for that model will apply to this element.

2.1.9 End of Netlist

Every netlist must finish with a .end control card.

2.1.10 Subcircuits

The subcircuit definition and instantiation is pretty much as in Spice. The definition may
appear after or before the instatiation in the netlist. Node names inside the subcircuit are
local to the subcircuit. The following is an example for a three-terminal subcircuit.

...

.subckt era6 1 5 "gnd1"

... (subcircuit definition)

.ends

...

xamp1 10 50 0 era6

...

The name of the subcircuit instance must begin with x.

2.2 Output Control

fREEDATM has an interpretive output language which uses a reverse polish notation syntax.
The operators operate on a stack and as an operation is performed zero or more arguements
are consumed by an opertor. This is an extremely powerful way of controlling output.

Output Commands

.out write ( (<qualifier> <value>* )* <operator> )* in <filename>

or
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.out plot ( (<qualifier> <value>* )* <operator> )* [[<gnuplotPostambleScript>] <gnu-
plotPreambleScript>] in <filename>

or

.out system <string>

2.2.1 Writing

.out write ( (<qualifier> <value>* )* <operator> )* in <filename>

The write command writes what is left on the stack into the file filename.

Example

.out write term 4 vt in "4v.out"

This writes the time domain voltage at terminal 4 using the file 4v.out as an output file.

2.2.2 Plotting

.out plot ( (<qualifier> <value>* )* <operator> )* [[<gnuplotPostambleScript>] <gnu-
plotPreambleScript>] in <filename>

The plot command writes what is left on the stack into the file filename and initiates a
plot. The file can be plotted interactively using the fREEDATM Output Viewer. Also, a file
named <filename>.cmd is created. This file is a gnuplot [24] script file that plots the desired
data. The Scripts are optional strings and are used to send additional commands to the
gnuplot program.

<gnuplotPreambleScript> is a string of semicolon delineated gnuplot commands prior to
the plot command which is automatically issued.

<gnuplotPostambleScript> is a string of semicolon delineated gnuplot commands after the
plot command.

If the option gnuplot is present in the .options card, the gnuplot program will be called
automatically by fREEDATM. Note that this is generally not needed when using the Output
Viewer.

Example

.out plot term 4 vt in "4v.out"

There are no script commands here. This plots the time domain voltage at terminal 4 using
the file 4v.out as an output file. This functions as both a write and a plot.

2.2.3 Running a System Command

.out system <string>

Use this to run the string as a command to the operating system.
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Example

.out system "echo Hello"

Prints “Hello” on the screen.

2.2.4 Nomenclature

The following nomenclature is used in describing the output operators.
type description
scalar numeric types

i integer
f floating-point
r real (integer or floating-point)
c complex
s scalar (integer, floating-point or complex)

scalar and mixed numeric types

fv floating-point vector
cv complex vector
v floating-point or complex vector
fsv floating-point scalar or vector
csv complex scalar or vector
sv scalar or vector (any)
prom an appropriately-promoted numeric type
-x (suffix to vector types) x data required

other types

any any type
string character string
var variable name
file data file
func function pointer

2.2.5 Qualifiers

type description

qualifiers (network types)

term terminal (or node)
element circuit element
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2.2.6 Operators

General Operators

operator function argument(s) result

dup duplicate object any same
get get element of vector arg:v

index:i
s

put modify element of vector arg:v
index:i
val:s

v

stripx remove x data vx v
pack concatenates last vx’s on stack variable num-

ber of vx
m

system execute shell command string none

2.2.7 Network Operators

vf complex freq. domain voltage vec-
tor at a terminal

term cv

if complex freq. domain current vec-
tor at a terminal

term cv

xf complex freq. domain state variable
vector at a terminal

term cv

vt time domain voltage vector at a ter-
minal

term fv

it time domain current vector at a ter-
minal

term fv

ut time domain voltage vector at an
element port

elem fv

RPN Arithmetic Operators

Arithmetic Operators for reverse polish notation e.g. 3 4 add = 7
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add addition sv
sv

prom

sub subtraction sv
sv

prom

mult multiplication sv
sv

prom

div division sv
sv

prom

real real part csv fsv
imag imaginary part csv fsv
mag magnitude csv fsv
abs absolute value or magnitude sv fsv
contphase continuous phase csv fsv
prinphase principal value phase csv fsv
conj complex conjugate csv csv
neg additive inverse (negative) sv sv
recip reciprocal sv sv

Mathematical Operators

db dB (20 log10) sv fsv
db10 dB applied to power (10 log10) sv fsv
rad2deg convert radians to degrees fsv fsv
deg2rad convert degrees to radians fsv fsv
minlmt limit the minimum value arg:fsv

min:f
fsv

maxlmt limit the maximum value arg:fsv
max:f

fsv

diff differences fsv fsv
deriv derivative fsv fsv
sum sums fsv fsv
integ integral fsv fsv
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Signal Processing Operators

smpltime current analysis timebase as x and
y of result

none fv

sweepfrq current analysis sweep frequencies
as x and y of result

none fv

smplcvt interpolate signal1 over timebase of
signal2

signal1:v
signal2:vx

vx

sweepcvt interpolate frq1 over sweep frequen-
cies of frq2

frq1:v
frq2:vx

vx

maketime create timebase starting at t = 0 in
x and y of result

tmax:r
pts:i

vx

makesweep create sweep frequencies starting at
f = 0 in x and y of result

fmax:r
pts:i

vx

fft FFT (argument should have 2k

points)
timedata:fv cv

invfft inverse FFT (argument should have
2k − 1 points)

frqdata:cv fv

cconv real circular (FFT) convolution
with zero padding

signal1:fv
signal2:fv

fv

upcconv unpadded real circular (FFT) con-
volution

signal1:fv
signal2:fv

fv

sconv slow (time-domain) real convolu-
tion

signal1:fv
signal2:fv

fv

fconv fast (approximate) real convolution signal1:fv
signal2:fv

fv

lpbwfrq lowpass Butterworth filter fre-
quency response

frqvec:vx
corner:f
order:i

cvx

2.3 Example: Simulation of a Folded Slot Antenna

The netlist format is illustrated using an example. This example uses local reference nodes.
For a discussion of the local reference node concept see chapter ??. fREEDATM provides the
local references as a convenience tool, but it is still possible to treat circuits in a conventional
way using the node “0” or “gnd” as a global reference.

As a component of a spatial power combining circuit the CPW folded-slot antenna [37],
see Fig. 2.1, with polarizers transmits an amplified version of an incident propagating field.
In Fig. 2.1 the two orthogonal folded-slots are connected to each other by a CPW with an
inserted MMIC amplifier.The system is modeled using the circuit of Fig. 2.2 where electro-
magnetic modeling of this structure is discussed in [38, 39, 40]. Note that three different
local reference nodes are required. EM modeling yields a port-based y parameters of the
antennas at each frequency of interest. The transfer of data between the EM and circuit
simulators (typically a file) includes a header with port grouping information (a port group-
ing includes terminals associated with a specific local reference node). This is required by
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the circuit simulator in order to expand the port-based matrix into nodal form and also to
check the connectivity of the spatially-distributed circuit.

Below is shown the data file for this example. Each port belong to a different group, so
the element has four terminals. After reading the header the circuit simulator knows the
number of elements of the matrix and the port number and local reference corresponding to
each row and column of the matrix.

# port:group

1:1

1:2

# GHZ Y RI R 50

4

0.00355603 -0.0233196

-0.00121905 -0.00496212

-0.00121905 -0.00496212

0.00355603 -0.0233196

...

The rest of the file consist in a list of frequencies and the associated matrix elements in
complex form.

The parser provides several facilities such as the .model statement support for any el-
ement type and a complete reverse polish notation calculator for the output data. The
corresponding netlist is shown below.

*** Unit Cell Folded Slot Antenna ***

.ac start = 3.6GHz stop = 4.8GHz n_freqs = 7

* Local reference nodes

.ref 100

.ref 200

* CPW structure

nport:cpw_2 10 20 100 200 filename = "unitcell.yp"

* Transistor small signal model

nport:amplifier 1 2 0 filename = "feedback_ne3210s1.yp"

* Field excitation

gridex:iin 10 100 20 200 ifilename = "unitcell.i"

+ efilename = "dummy.e"

* current meters

vsource:amp1 10 11

vsource:amp2 20 22
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* CPW Transmission lines

.model fsa1 cpw (s=.369m w=1m t=10u er=10.8 tand=.001)

cpw:t1 11 100 1 0 model="fsa1" length=8.5m

cpw:t2 22 200 2 0 model="fsa1" length=17.5m

.out write element "vsource:amp1" 0 if in "i1.out"

.out write element "vsource:amp2" 0 if in "i2.out"

* Plot magnitude of current gain

.out plot element "vsource:amp2" 0 if element

+ "vsource:amp1" 0 if div mag db in "igain.out"

* Plot magnitude of voltage gain

.out plot term 20 vf term 10 vf div mag db in "gain.out"

.end
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Chapter 3

Algebraic Expressions

This page is still under development so there may be problems. The big one is that expres-
sions do not work at all now.

Most places where a numeric value is normally used an expression (within braces { . . .
}) can be used instead. An expression can contain any supported mathematical operation,
constant numeric values, parenthesees “( . . . )” to indicate precedence, commas “,” to sepa-
rate arguments of a function, or parameters. Valid parameters must begin with an alphabetic
character. Places where expressions cannot be used are

• As polynomial coefficients.

• The values of the transmission line device parameters NL and F.

• The values of the piece-wise linear characteristic in the PWL form of the independent
voltage (V) and current (I) sources.

• The values of the resistor device parameter TC.

• As node numbers.

and

• Values of most statements (such as .TEMP, .AC, .TRAN etc.)

Specifically included are

• The values of all other device parameters.

• The values in .IC and .NODESET statements.

• The values in .SUBCKT statements.

and

• The values of all model parameters.
27



28 CHAPTER 3. ALGEBRAIC EXPRESSIONS

Table 3.1: Expression operators.

Operator Precedence Syntax Description
Name Index

Arithmetic Operators
UNARY PLUS 10 +x unary plus
UNARY MINUS 10 -x unary minus
POWER 9 x^y or x**y raise to a power, xy

MULTIPLY 8 x*y multiply
DIVIDE 8 y/x divide
PLUS 7 x+y plus
MINUS 7 x-y minus

Logical Operators
NOT 10 !x NOT
GREATER OR EQUAL 6 x >= y greater than or equal
LESS OR EQUAL 6 x <= y less than or equal
GREATER THAN 6 x > y greater than
LESS THAN 6 x < y less than
EQUAL 5 x == y equality
NOT EQUAL 5 x! = y no equal
AND 4 x&y logical and
OR 3 x|y logical or
XOR 2 x y exclusive or

Operators that can be used in expressions are listed in Table 3.1. Here x and y maybe
numbers, parameters or sub-expressions. The result of the logical operations is either 0 or 1.
Operands are treated as 1 if they are not exactly zero. The precedence of the operators is also
given in Table 3.1 and follows normal practice. A higher precedence number indicates higher
prcedence and operators of the same precedence are evaluated from left to right. For example

idss* ( vgs + vgs^2 ) is evaluated as idss ∗ (vgs + (vgs2))
where idss and vgs are parameters defined else-
where.

3 + 5 -- 4||(3^-4)>=23 is evaluated as
(((3 + 5)− (−4))||((3( − 4)) >= 23))

Functions that can be used in expressions are listed in Table 3.2.

Note:

1. The table look up function returns a y value given an x value and a set of (x,y)
points defining piece-wise linear. The number of x − y pairs in the table function is
limited approximately to 100. A further limit is imposed by the amounjt of information
thatmustbe retained during expression evalurion. To obtain the full 100 print capability
in a complicated expression it may be necessary to use an intermediate variable. expre
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Table 3.2: Expression functions.

Operator Syntax Description
SIN sin(x) sine, argument in radians
COS cos(x) cosine, argument in radians
TAN tan(x) tangent, argument in radians
ASIN asin(x) or arcsin(x) arcsine, result in radians
ACOS acos(x) or arcsin(x) arccosine, result in radians
ATAN atan(x) or arcsin(x) arctangent, result in radians
SINH sinh(x) hyperbolic sine
COSH cosh(x) hyperbolic cosine
TANH tanh(x) hyperbolic tangent
EXP exp(x) exponentiation, ex

ASINH asinh(x) or arcsinh(x) arc-hyberbolic sine
ACOSH acosh(x) or arccosh(x) arc-hyberbolic cosine
ATANH atanh(x) or arctanh(x) arc-hyberbolic tangent
ABS abs(x) absolute, |x|
SQRT sqrt(x) square root,

√
x

LN ln(x) log to base e of x
LOG log(x) or log10(x) log to base 10 of x

SIGN sign(x) sign of x =

{
1 if x >= 0

−1 if x < 0
DB db(x) decibell = 10 log(x)

LIMIT limit(x,min,max) limit =





min if x < min
max if x < max

x otherwise
TABLE table(x, x1, y1, ..., xn, yn) table lookup, see note 1
DUPLICATE dup(x) duplicates x, see note 2

IF if(x, y, z) conditional, =

{
y if x not zero
z if x is zero



30 CHAPTER 3. ALGEBRAIC EXPRESSIONS

1. The dup() function duplicates an operand. It provides a means to use a sub-expression
twice while only evaluating it once. For example

Operation Expansion
(dup(x)+) −→ x + x
(dup(dup(x))+*) −→ (x + x) ∗ x

limit(dup(x),max) −→
{

x if x < max
max if x > max

if(dup(dup(x))¿0, *2,*3) −→
{

2x if x > 0
3x if x < 0

It is good practice to enforce precedence by using parentheses. That is, use (dup(x)+)
rather than dup(x)+ .
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fREEDA Commands

4.1 .inc Include Statement

The .inc statement is an efficient way to include subcircuits and common netlist code.
Form

.lib [FileName ]

Filename is the name of the file to be read.

Note

1. It must contain only .model statements, subcircuit definitions (between .subckt and
.ends statements), and .lib statements.

2. The include file Filename is searched in the current directory.

.INC and the .LIB function similarly with the exception that .LIB searches for the file
in a specific directory while .INC searches for the file in current directory.

31
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4.2 .lib Library Statement

The .lib statement is an efficient way to include .model statements and subcircuits.
Form

.lib [FileName ]

Filename is the name of the library file.

Note

1. It must contain only .model statements, subcircuit definitions (between .subckt and
.ends statements), and .lib statements.

2. The library file Filename is searched in the directory pointed to by the environment
variable specified by the environment variable FREEDA LIBRARY .

Libraries could be included using either the .INC statement or by the .LIB statement.
.INC and the .LIB function similarly with the exception that .LIB searches for the file
in a specific directory while .INC searches for the file in current directory.
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4.3 .locate Identify Location of Terminals

Form:
.locate 〈 terminal name〉 〈 X〉 〈 Y〉

Description:
.LOCATE is used to identify the position of a terminal.

Credits:

Name Affiliation Date Links
Michael Steer NC State University Sept 2000
m.b.steer@ieee.org www.ncsu.edu
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4.4 .plot Plot Specification

NOT FULLY FUNCTIONAL as of f REEDATM1.3

The plot specification controls the information that is plotted as the result of various
analyses.

Form: Form

.PLOT TRAN OutputSpecification [PlotLimits ]
+ [OutputSpecification [PlotLimits ] . . . ]

.PLOT AC OutputSpecification [PlotLimits ]
+ [OutputSpecification [PlotLimits ] . . . ]

.PLOT DC OutputSpecification [PlotLimits ]
+ [OutputSpecification [PlotLimits ] . . . ]

.PLOT NOISE NoiseOutputSpecification [(DistortionReportType) ]
[PlotLimits ]
+ [NoiseOutputSpecification [(DistortionReportType) ] [PlotLimits ]

.PLOT DISTO DistortionOutputSpecification [(DistortionReportType) ]
[PlotLimits ]
+ [DistortionOutputSpecification [(DistortionReportType)] [PlotLim-
its ] . . . ] [(DistortionReportType) ] [PlotLimits ]

tran is the keyword specifying that this .plot statement controls the reporting of
results of a transient analysis initiated by the .TRAN statement.

ac is the keyword specifying that this .plot statement controls the reporting of
results of a small-signal AC analysis initiated by the .ac statement.

dc is the keyword specifying that this .plot statement controls the reporting of
results of a DC analysis initiated by the .dc statement.

noise is the keyword specifying that this .plot statement controls the reporting of
results of a noise analysis initiated by the .noise statement.

OutputSpecification specifies the voltage or current to be plotted against the sweep variable.
The sweep variable is dependent on the type of analysis.

Voltages may be specified as an absolute voltage at a terminal: V(TerminalName)
or the voltage at one terminal with respect to that at another terminal,
e.g. V(Terminal1Name,Terminal2Name).
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For the reporting of the results of an AC analysis the following outputs can be
specified by replacing the V as follows:

VR - real part
VI - imaginary part
VM - magnitude
VP - phase
VDB - 10 log(10 magnitude)

In AC analysis the default is VM for magnitude.

Currents are specified by referencing the name of the voltage source through
which the current is measured, e.g. I(VVoltageSourceName).
For the reporting of the results of an AC analysis the following outputs can be
specified by replacing the I as follows:

IR - real part
II - imaginary part
IM - magnitude
IP - phase
IDB - 10 log(10 magnitude)

In AC analysis the default is IM for magnitude.

PlotLimits are optional and can be placed after any output specification. PlotLimits has
the form (LowerLimit,UpperLimit) . All quantities will be plotted using the
same PlotLimits. The default is to automatically scale the plot and perhaps
use different scales for each of the quantities to be plotted.

NoiseOutputSpecification specifies the noise measure to be reported. The two options are
ONOISE which reports the output noise and INOISE which reports the equiva-
lent input noise. See the .NOISE statement for a detailed explanation.
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It must be one of the following:
ONOISE - magnitude of the output noise
DB(ONOISE) - output noise in dB
INOISE - magnitude of the equivalent input noise
DB(INOISE) - equivalent input noise in dB
GAIN - voltage gain
DB(GAIN) - voltage gain in dB (= 20 log(GAIN)
GT - transducer gain
DB(GT) - transducer gain in dB (= 10 log(GT)
NF - spot noise factor
DB(NF) - spot noise figure (= 10 log(NF)
SNR - output signal-to-noise ratio
DB(SNR) - output signal-to-noise ratio in dB (= 20 log(SNR)
TNOISE - output noise temperature.

SParameterOutputSpecification specifies the S-parameter output variables that are to be
printed. Each variable must have one of the following forms:

S(i,j) - Magnitude of Sij

SR(i,j) - Real part of Sij

SI(i,j) - Imaginary part of Sij

SP(i,j) - Phase of Sij in degrees
SDB(i,j) - Magnitude of Sij in dB (= 20 log(S(i,j)))
SG(i,j) - Group delay of Sij

The port numbers are i, j which are specified using the PNR keywor when the
port (‘P’) element is specified.

DistortionOutputSpecification specifies the distortion component to be reported in a tabular
format of up to 8 columns plus an initial column with the sweep variable. The
DistortionOutputSpecification is one of the following:

HD2 - the second harmonic distortion
HD3 - the second harmonic distortion
SIM2 - the sum frequency intermodulation component
DIM2 - the difference frequency intermodulation compo-

nent
DIM3 - the third order intermodulation component

See the .DISTO statement for a description of these distortion components.

DistortionReportType specifies the format for reporting the distortion components. It must
be one of the following:

R - real part
I - imaginary part
M - magnitude
P - phase
DB - 10 log(10 magnitude)

The default is M for magnitude.

Note



4.4. .PLOT PLOT SPECIFICATION 37

1. There can be any number of .PLOT statements.

2. All of the output quantities specified on a single .PLOT statement will be plotted on
the same graph using ASCII characters. An overlap will be indicated by the letter X.
The plot produced by the .PLOT statement is a line printer plot. While plotting is
primitive it can be plotted on any printer and is incorporated in the output log file.

3. The plot output of the results of an AC analysis always have a logarithmic vertical
scale.
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4.5 .print Print Specification

NOT FULLY FUNCTIONAL as of f REEDATM1.3

Form:
The print specification controls the information that is reported as the result of various
analyses.

Form

.print TRAN OutputSpecification [OutputSpecification . . . ]

.print AC OutputSpecification [OutputSpecification . . . ]

.print DC OutputSpecification [OutputSpecification . . . ]

.print DISTO DistortionOutputSpecification ( DistortionReportType
)

+ [DistortionOutputSpecification ( DistortionReportType ) . . . ]

TRAN is the keyword specifying that this .print statement controls the reporting of
results of a transient analysis initiated by the .TRAN statement.

AC is the keyword specifying that this .print statement controls the reporting of
results of a small-signal AC analysis initiated by the .AC statement.

DC is the keyword specifying that this .print statement controls the reporting of
results of a DC analysis initiated by the .DC statement.

NOISE is the keyword specifying that this .print statement controls the reporting of
results of a noise analysis initiated by the .NOISE statement.

DISTO is the keyword specifying that this .print statement controls the reporting of
results of a small-signal AC distortion analysis initiated by the .DISTO state-
ment.

OutputSpecification specifies the voltage or current to be reported in a tabular format of up
to 8 columns plus an initial column with the sweep variable.

Voltages may be specified as an absolute voltage at a node: V(TerminalName)
or the voltage at one node with respect to that at another node,
e.g. V(Terminal1Name,Terminal2Name).
For the reporting of the results of an AC analysis the following outputs can be
specified by replacing the V as follows:

VR - real part
VI - imaginary part
VM - magnitude
VP - phase
VDB - 10 log(10 magnitude)

In AC analysis the default is VM for magnitude.
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Currents are specified by referencing the name of the voltage source through
which the current is measured, e.g. I(VVoltageSourceName).
For the reporting of the results of an AC analysis the following outputs can be
specified by replacing the I as follows:

IR - real part
II - imaginary part
IM - magnitude
IP - phase
IDB - 10 log(10 magnitude)

In AC analysis the default is IM for magnitude.

NoiseOutputSpecification specifies the noise measure to be reported. The two options are
ONOISE which reports the output noise and INOISE which reports the equiva-
lent input noise. See the .NOISE statement for a detailed explanation.
It must be one of the following:
ONOISE - RMS output noise voltage
DB(ONOISE) - output noise voltage in dB (= 20 log(ONOISE)
INOISE - RMS equivalent input noise voltage
DB(INOISE) - equivalent input noise voltage in dB (= 20 log(INOISE)
GAIN - voltage gain
DB(GAIN) - voltage gain in dB (= 20 log(GAIN)
GT - transducer gain
DB(GT) - transducer gain in dB (= 10 log(GT)
NF - spot noise factor
DB(NF) - spot noise figure (= 10 log(NF)
SNR - output signal-to-noise ratio
DB(SNR) - output signal-to-noise ratio in dB (= 20 log(SNR)
TNOISE - output noise temperature.

SParameterOutputSpecification specifies the S-parameter output variables that are to be
printed. Each variable must have one of the following forms:
S(i,j) - Magnitude of Sij

SR(i,j) - Real part of Sij

SI(i,j) - Imaginary part of Sij

SP(i,j) -Phase of Sij in degrees
SDB(i,j) - Magnitude of Sij in dB (= 20 log(S(i,j)))
SG(i,j) - Group delay of Sij
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The port numbers are i, j which are specified using the PNR keyword when the
port element is specified.

DistortionOutputSpecification specifies the distortion component to be reported in a tabular
format of up to 8 columns plus an initial column with the sweep variable. The
DistortionOutputSpecification is one of the following:

HD2 - the second harmonic distortion
HD3 - the second harmonic distortion
SIM2 - the sum frequency intermodulation component
DIM2 - the difference frequency intermodulation compo-

nent
DIM3 - the third order intermodulation component

See the .DISTO statement for a description of these distortion components.

DistortionReportType specifies the format for reporting the distortion components. It must
be one of the following:

R - real part
I - imaginary part
M - magnitude
P - phase
DB - 10 log(10 magnitude)

The default is M for magnitude.

Note
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1. There can be any number of .print statements.

2. The number of significant digits of the results reported is NUMDGT which is set in a
.options statement.

dc and tran Reporting
The output specifications available for the DC sweep and transient analyses are

I(DeviceName) Current through a two terminal device (such as a resistor R element) or the
output of a controlled voltage or current source. e.g. I(R22) is the current
flowing through resistor R22 from node N1 to N2 of R22.

ITerminalName(DeviceName) Current flowing into terminal named TerminalName (such
as B for gate) from the device named DeviceName (such as Q12). e.g. IB(Q12)

IPortName(TransmissionLineName) Current at port named PortName (either A or B) of
the transmission line device named TransmissionLineName

V(TerminalName) Voltage at a node of name TerminalName.

V(n1, n2) Voltage at node n1 with respect to the voltage at node n2.

V(DeviceName) Voltage across a two terminal device (such as a resistor R element) or at the
output of a controlled voltage or current source.

VTerminalName(DeviceName) Voltage at terminal named TerminalName (such as G for
gate) of the device named DeviceName (such as M12). e.g. VG(M12)

VTerminalName1 TerminalName2(DeviceName) Voltage at terminal named TerminalName1
(such as G for gate) th respect to the terminal name TerminalName2 (such as
S for source) of the device named DeviceName (such as M12). e.g. VGS(M12)

VPortName(TransmissionLineName) Voltage at port named PortName (either A or B) of
the transmission line device named TransmissionLineName (such as T5). e.g.
VA(M5)

Two Terminal Device Types Supported for DCand Transient Analysis Reporting
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The single character identifier for the following elements as well as the rest of the device
name can be used as the DeviceName in the I(DeviceName) and I(DeviceName) output
specifications.

Element Type Description
C capacitor
D diode
E voltage-controlled voltage source
F current-controlled current source
G voltage-controlled current source
H current-controlled voltage source
I independent current source
L inductor
R resistor
V independent voltage source

Multi-Terminal Device Types Supported for DCand Transient Analysis Reporting

The single character identifier for the following elements as well as the rest of the device name
can be used as the DeviceName in the ITerminalName(DeviceName), VTerminalName(DeviceName)
and VTerminalName1 TerminalName2(DeviceName) output specifications.

Element Type Description
B GaAs MESFET Terminals:

D — drain
G — gate
S — source

J JFET Terminals:
D — drain
G — gate
S — source

M MOSFET Terminals:
B — bulk or substrate
D — drain
G — gate
S — source

Q BJT Terminals
C — collector
B — base
E — emitter
S — source
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AC Reporting
The output specifications available for reporting the results of an AC frequency sweep anal-
ysis includes all of the specification formats discussed above for DC and transient analysis
together with a number of possible suffixes:

DB - 10 log(10 magnitude)
M - magnitude
P - phase
R - real part
I - imaginary part
G - group delay = ∂φ/∂f

where φ is the phase of the quantity being re-
ported and f is the analysis frequency.

In AC analysis the default suffix is M for magnitude.

Two-Terminal Device Types Supported for AC Reporting

The single character identifier for the following elements as well as the rest of the device
name can be used as the DeviceName in the I(DeviceName) and I(DeviceName) output
specifications.

Element Type Description
C capacitor
D diode
I independent current source
L inductor
R resistor
V independent voltage source

Multi-Terminal Device Types Supported for DCand Transient Analysis Reporting

The single character identifier for the following elements as well as the rest of the device name
can be used as the DeviceName in the ITerminalName(DeviceName), VTerminalName(DeviceName)
and VTerminalName1 TerminalName2(DeviceName) output specifications.
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Element Type Description
B GaAs MESFET Terminals:

D — drain
G — gate
S — source

J JFET Terminals:
D — drain
G — gate
S — source

M MOSFET Terminals:
B — bulk or substrate
D — drain
G — gate
S — source

Q BJT Terminals
C — collector
B — base
E — emitter
S — source

Credits:

Name Affiliation Date Links
Michael Steer NC State University Sept 2000
m.b.steer@ieee.org www.ncsu.edu



4.6. STRUCTURE OF A FREEDA NETLIST 45

4.6 Structure of a fREEDA Netlist

There are four types of elements used in TRANSIM: 1 nodes, edges, edge coupling groups
(ECGs) and node coupling groups (NCGs). Within those broad classifications there are
a wide variety of individual element types, for example, “mlin” (microstrip line), “coax”
(coaxial cable), and “idealj” (ideal junction). “element” and “model” are used synonomously.

4.6.1 Lexical Rules

A lexical rule defines an identifiable object in the input file. That is it defines the equivalent
of words. Words put togetehr in a particular order define a grammar. fREEDA recognizes
many ”words” but the important one are as follows.

whitespace a blank
a newline followed immediately by a +
sign.
a tab
a vertical tab
a newpage

identifier A character sequence beginning with an al-
phabetic character

A− Za− z

variables A variable must begin with an alphabetic
character or a $ followed by alphanumeric
characters or ‘ ’ or ‘.’
Example:
HEIGHT

$height

height.1 1

Note that HEIGHT and height are identical
as case is not preserved.

1element: a model of a physical component of a network.
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strings Either as an identifier (a continuous se-
quence of alphanumeric characters) or en-
closed within double quotes.
The following special escaped characters
are allowed in strings defined within dou-
ble quotes.
" To include a double quote in a string.
\n To indicate a newline
Examples:
gate

"VOLTAGE WAVEFORM"

Note: Strings may continue across lines us-
ing the continuation syntax:
"VOLTAGE

+ WAVEFORM"

or simply by continuing across a line as in
"VOLTAGE

WAVEFORM"

numbers] “E” or “e” to indicate exponent.

dotted command A “.” followed by alphabetic characters at
the beginning of a line.

lf A line feed or carriage return.

Capitalization

The case of identifiers and keywords is ignored in TRANSIM netlists. The significance of
case is retained only within quoted strings, and in that case it is always retained. Internally
characters are mapped to lower case.
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4.7 SPICE Elements

All regular SPICE elements have the same syntax as in standard SPICE but with the fol-
lowing additions.

1. A .model specification is allowed for all elements.

2. Anything that can appear in a .model specification can be included in the specification
of the element.

3. If a parameter is not specified either through an element specification or a .model

specification then the default parameters for that model will apply to this element.

<term id> is either an integer or a string in double quotes, and is the name of a terminal
in the network. <term id list> is a list of one or more terminal id’s separated by white
space.

4.8 General File Comments

The first line of an input file is used as the identifier string and is associated with various
output files to identify their origin. It is seen strictly as a text string and no processing is
done on it. If a particular statement won’t fit on a single line, it may be continued by placing
a “+” at the beginning of each additional line. All comments are proceeded by an “*” (an
asterisk) and there is no limit to the number of comment lines used in a file. A comment
may begin anywhere on a line (such as after a statement) and any text after the asterisk is
ignored by the parser.

4.9 Element Instance Syntax

Each instance of an element in TRANSIM netlist is declared in the same manner with each
declaration existing on a separate line. The syntax is:

element:instance_id term1 term2.... model = "identifier"

The terms element and identifier are the same as those used in the description of the .model
statement and instance id is a unique string that identifies this instance of identifier. term1,
term2, etc. are the terminal specifiers which maybe a string or numeric values.

4.10 Netlist Variables

Local variables for use inside a netlist may be set with the .options command using the same
syntax as used to set system variables. For example

.options logic1 = 5.0

.options logic0 = 0.6

.options vdiff = logic1 - logic2

These local variables do not need to be declared before being set but they must be
set before being used. Local variables are designed so that common parameters (such as
microstrip width) may be declared in each .model statement as a variable with the variables
value set once at the top of the netlist. Changing width requires changing one variable rather
than multiple declarations in different .model statements. The third .options statement above
illustrates the use of mathematical operations on local variables, in this case the difference
between logic1 and logic0 is assigned to vdiff. Various analyses rely on variables set in a
.options statement. The variables are defined in the description of the particular analyses.
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4.11 .couple — Couple Elements

NOT FUNCTIONAL in current version Form:
.couple 〈 element instance name〉 ... 〈 element instance name〉 〈 terminal name〉
〈 terminal name〉

Description:
.couple is used to identify the elements that combine to create a coupled element.

This command is used to indicate which edges (or nodes) to be simulated as coupled
lines. The syntax is:

.couple line_1 line_2 line_3....

where line 1 etc. are the specific names given to each instance of a line (or node). Note
that the type of model used for coupled edges or nodes must be able to handle coupling. In
general, a single line or node that may also be coupled is just a subset of the coupled line
case. In other words, if a coupled line model (such as cmlin) is specified as the line model
and the .couple statement is not used, then the simulator will default to using the uncoupled
model (in this case mlin). This is not a runtime option but is fixed inside the code modules
for each model.
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4.11.1 .locate — Identify Location of Terminals

This command is used to define the physical location or a terminal. These cartesian coor-
dinates refer to the locations of the “logical” terminals of the device. The units are meters.
The syntax is:

.locate term x y

.locate term x y z

where term is one of the terminals of a device in the netlist and x, y and z (if provided) are
the coordinates of that terminal. Be default z=0.
Credits:

Name Affiliation Date Links
Michael Steer NC State University Sept 2000
m.b.steer@ieee.org www.ncsu.edu
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4.12 .model

Description:
.model is used to identify the elements that combine to create a coupled element.

The syntax of the .model statement is:

.model identifier element (par1 par2 ...)

• (identifier) is any character string name assigned by the user by which this particular
model will be referred.

• (model type) is the model name as defined in the .c file associated with this model and
as declared in pd physdef.c.

• (par1 par2...) is the parameter list.

The .model statement must be used before it is referred to in the netlist. All fREEDA
elements can utilize a .model statement.
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4.13 .options

Description:
.options is used to identify the elements that combine to create a coupled element.

This command allows various runtime options and user defined netlist variables to be set
prior to execution. The various system options will be discussed later in this appendix but
the general syntax is:

.options variable = value

.options variable = "string"

The first case is used for assigning a numeric value to a variable and the second is used
to assign a string. Note that double quote marks (“...”) must be used to surround the
string. Not typecasting of numeric variables is performed in the .options command and thus
no distinction is made between floating point and integer values. Therefore 2 is the same as
2.00 until the value is actually used in the simulator. Exponential notation is denoted by the
“e” operator (i.e. 0.001 = 1.0e-3). Note that string variables may contain any symbols but
must be continuous with no white space between characters (i.e. “V high” not “V high”).
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4.14 .out

Form:
.out write ( [[<qualifier>] <value>*] <operator> )* in <filename>
This write what is left on the stack into the file filename or
.out system ( [[<qualifier>] <value>*] [<operator>] )* This performs a system call
of the string equivalent of whatever is left on the stack.

.out 〈 terminal name〉 〈 terminal name〉 〈 terminal name〉 〈 terminal name〉

Description:
.out is used to identify the elements that combine to create a coupled element.

The .out command is used to process and output data resulting from a fREEDA run. The
.out statement uses stacks and has a syntax much like a reverse polish notation calculator.
It is a powerful output engine and can be utilized in its own right or in conjunction with
the more usual .print and .plot statements although these provide much less functionality.
A variety of signal processing functions including arithmetic operators may be used to ma-
nipulate the data prior to writing it to a file, plotting to the screen or piping it to a system
call.

fREEDA has an interpretive output language which uses a reverse polish syntax. The
operators operate on a stack and as an operation is performed zero or more arguments are
consumed by an operator.

Details of the various options will be shown at the end of this section but for most
situations and netlists, the voltages and currents at the various external ports are to be
written to output files in standard ASCII format. An example is shown below:

.out write term 1 vt in "1v.out"

.out write term 2 it in "2i.out"

In the first example, the voltage at terminal 1 is written out to file “1v.out”. The second
example writes the current going into terminal 2 to the file “2i.out”.
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4.14.1 Qualifiers

type description

qualifiers (network types)

term terminal reference
junct junction (node) reference (NOT CURRENTLY AVAILABLE)
line line (edge) reference (NOT CURRENTLY AVAILABLE)

4.14.2 Nomenclature

The following nomenclature is used in describing the output operators.

type description
scalar numeric types

i integer
f floating-point
r real (integer or floating-point)
c complex
s scalar (integer, floating-point or complex)

scalar and mixed numeric types

fv floating-point vector
cv complex vector
v floating-point or complex vector
fsv floating-point scalar or vector
csv complex scalar or vector
sv scalar or vector (any)
prom an appropriately-promoted numeric type
-x (suffix to vector types) x data required

other types

any any type
string character string
var variable name
file data file
func function pointer
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4.14.3 Operators

General Operators

operator function argument(s) result

dup duplicate object any same
get get element of vector arg:v

index:i
s

put modify element of vector arg:v
index:i
val:s

v

stripx remove x data vx v
shell execute shell command (UNIX EN-

VIRONMENT ONLY)
string none

Network Operators

v complex voltage vector at a termi-
nal

term cv

i complex current vector at a termi-
nal

term cv

vt transient voltage vector at a termi-
nal

term fv

it transient current vector at a termi-
nal

term fv

zl load impedance at a terminal (NOT
CURRENTLY SUPPORTED)

term cv

ymelem element of the y-parameter matrix
of a junction (NOT CURRENTLY
SUPPORTED)

junct
row:i
col:i

cv

z0 characteristic impedance of a line line (NOT
CUR-
RENTLY
SUP-
PORTED)

cv

gamma complex attenuation of a line line (NOT
CUR-
RENTLY
SUP-
PORTED)

cv

yp admittance parameter of two termi-
nals

term (NOT
CUR-
RENTLY
SUP-
PORTED)

fv
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Arithmetic Operators

add addition sv
sv

prom

+ addition sv
sv

prom

sub subtraction sv
sv

prom

- subtraction sv
sv

prom

mult multiplication sv
sv

prom

* multiplication sv
sv

prom

div division sv
sv

prom

/ division sv
sv

prom

real real part csv fsv
imag imaginary part csv fsv
mag magnitude csv fsv
abs absolute value or magnitude sv fsv
contphase continuous phase csv fsv
prinphase principal value phase csv fsv
conj complex conjugate csv csv
neg additive inverse (negative) sv sv
recip reciprocal sv sv
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Mathematical Operators

db dB (20 log10) sv fsv
db10 dB applied to power (10 log10) sv fsv
rad2deg convert radians to degrees fsv fsv
deg2rad convert degrees to radians fsv fsv
minlmt limit the minimum value arg:fsv

min:f
fsv

maxlmt limit the maximum value arg:fsv
max:f

fsv

diff differences fsv fsv
deriv derivative fsv fsv
sum sums fsv fsv
integ integral fsv fsv
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Signal Processing Operators

smpltime current analysis timebase as x and
y of result

none fv

sweepfrq current analysis sweep frequencies
as x and y of result

none fv

smplcvt interpolate signal1 over timebase of
signal2

signal1:v
signal2:vx

vx

sweepcvt interpolate frq1 over sweep frequen-
cies of frq2

frq1:v
frq2:vx

vx

maketime create timebase starting at t = 0 in
x and y of result

tmax:r
pts:i

vx

makesweep create sweep frequencies starting at
f = 0 in x and y of result

fmax:r
pts:i

vx

fft FFT (argument should have 2k

points)
timedata:fv cv

invfft inverse FFT (argument should have
2k − 1 points)

frqdata:cv fv

cconv real circular (FFT) convolution
with zero padding

signal1:fv
signal2:fv

fv

upcconv unpadded real circular (FFT) con-
volution

signal1:fv
signal2:fv

fv

sconv slow (time-domain) real convolu-
tion

signal1:fv
signal2:fv

fv

fconv fast (approximate) real convolution signal1:fv
signal2:fv

fv

lpbwfrq lowpass Butterworth filter fre-
quency response

frqvec:vx
corner:f
order:i

cvx
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Other Operators

catalog produce catalog of elements none func
Example

.out write catalog in "list.txt"

Writes the catalog of the elements in the current fREEDA build and puts the catalog in the
file ‘list.txt’.
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4.15 .tran

Similar to SPICE’s .tran card with syntax:

.tran start stop delta

where start is the starting transient analysis time, stop is the ending time and delta is
the time increment. If delta is zero, the finest time increment is used (determined by the
highest frequency, sfrq and the number of frequency points spts).

4.16 .tran2

Under construction

4.17 .tran4

Under construction
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4.18 .tran basel

NO LONGER SUPPORTED
But it will be. The analysis was used in an earlier version and performs convolution-based

analysis.
This section defines the options used in Mark Basel’s particular form of transient analysis.

This analysis is not publicly available. The variables set in in a .options statement for this
analysis are shown in Table 4.2
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Table 4.2: fREEDA runtime options

Variable Name Definition Use
iterationdump Debugging dump for ON or OFF

each iteration of
transient analysis

dump Debugging dump of ON or OFF
various variables

dumpnet Debugging dump of network ON or OFF
as interpreted by TRANSIM

dcNormal Switch for using ON or OFF
threshold error

correction
spts number of frequency int: power of 2

points used in y(f)
Zm Matching network impedance float, ohms
type form of analysis “transient”

“hb”
sfrq Maximum frequency float: hz

LPFOrder low pass filter order int: 1,2 or 3
impulselength fraction of impulse float: 0-1

response to use in
transient analysis

impulsescale scale factor for float: any
impulse responses

ytthresthru relative threshold level float: 0-1
for thru and self impulse

response terms
ytthrescross relative threshold level float: 0-1

for cross impulse
response terms

tolerance stopping difference float: any
for successive values
in Newton iteration

maxNoOfIterates Maximum number of int: any
Newton iteration

steps per analysis point
LPFCornerFrequency corner frequency when float: hz

using LP filter
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Chapter 5

Output Control

fREEDATM has an interpretive output language which uses a reverse polish notation syntax.
The operators operate on a stack and as an operation is performed zero or more arguements
are consumed by an opertor. This is an extremely powerful way of controlling output.

5.1 Output Commands

.out write ( (<qualifier> <value>* )* <operator> )* in <filename>

or

.out plot ( (<qualifier> <value>* )* <operator> )* [[<gnuplotPostambleScript>] <gnu-
plotPreambleScript>] in <filename>

or

.out system <string>

5.1.1 Writing

.out write ( (<qualifier> <value>* )* <operator> )* in <filename>

The write command writes what is left on the stack into the file filename.

Example

.out write term 4 vt in "4v.out"

This writes the time domain voltage at terminal 4 using the file 4v.out as an output file.

5.1.2 Plotting

.out plot ( (<qualifier> <value>* )* <operator> )* [[<gnuplotPostambleScript>] <gnu-
plotPreambleScript>] in <filename>
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The plot command writes what is left on the stack into the file filename and initiates a
plot. The file can be plotted interactively using the fREEDATM Output Viewer. Also, a file
named <filename>.cmd is created. This file is a gnuplot [24] script file that plots the desired
data. The Scripts are optional strings and are used to send additional commands to the
gnuplot program.

<gnuplotPreambleScript> is a string of semicolon delineated gnuplot commands prior to
the plot command which is automatically issued.

<gnuplotPostambleScript> is a string of semicolon delineated gnuplot commands after the
plot command.

If the option gnuplot is present in the .options card, the gnuplot program will be called
automatically by fREEDATM. Note that this is generally not needed when using the Output
Viewer.

Example

.out plot term 4 vt in "4v.out"

There are no script commands here. This plots the time domain voltage at terminal 4 using
the file 4v.out as an output file. This functions as both a write and a plot.

5.1.3 Running a System Command

.out system <string>

Use this to run the string as a command to the operating system.

Example

.out system "echo Hello"

Prints “Hello” on the screen.

5.2 Nomenclature

The following nomenclature is used in describing the output operators.
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type description
scalar numeric types

i integer
f floating-point
r real (integer or floating-point)
c complex
s scalar (integer, floating-point or complex)

scalar and mixed numeric types

fv floating-point vector
cv complex vector
v floating-point or complex vector
fsv floating-point scalar or vector
csv complex scalar or vector
sv scalar or vector (any)
prom an appropriately-promoted numeric type
-x (suffix to vector types) x data required

other types

any any type
string character string
var variable name
file data file
func function pointer

5.3 Qualifiers

type description

qualifiers (network types)

term terminal (or node)
element circuit element
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5.4 Operators

5.4.1 General Operators

operator function argument(s) result

dup duplicate object any same
get get element of vector arg:v

index:i
s

put modify element of vector arg:v
index:i
val:s

v

stripx remove x data vx v
pack concatenates last vx’s on stack variable num-

ber of vx
m

system execute shell command string none

5.4.2 Network Operators

vf complex freq. domain voltage vec-
tor at a terminal

term cv

if complex freq. domain current vec-
tor at a terminal

term cv

xf complex freq. domain state variable
vector at a terminal

term cv

vt time domain voltage vector at a ter-
minal

term fv

it time domain current vector at a ter-
minal

term fv

ut time domain voltage vector at an
element port

elem fv

5.4.3 RPN Arithmetic Operators

Arithmetic Operators for reverse polish notation e.g. 3 4 add = 7
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add addition sv
sv

prom

sub subtraction sv
sv

prom

mult multiplication sv
sv

prom

div division sv
sv

prom

real real part csv fsv
imag imaginary part csv fsv
mag magnitude csv fsv
abs absolute value or magnitude sv fsv
contphase continuous phase csv fsv
prinphase principal value phase csv fsv
conj complex conjugate csv csv
neg additive inverse (negative) sv sv
recip reciprocal sv sv

5.4.4 Mathematical Operators

db dB (20 log10) sv fsv
db10 dB applied to power (10 log10) sv fsv
rad2deg convert radians to degrees fsv fsv
deg2rad convert degrees to radians fsv fsv
minlmt limit the minimum value arg:fsv

min:f
fsv

maxlmt limit the maximum value arg:fsv
max:f

fsv

diff differences fsv fsv
deriv derivative fsv fsv
sum sums fsv fsv
integ integral fsv fsv
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5.4.5 Signal Processing Operators

smpltime current analysis timebase as x and
y of result

none fv

sweepfrq current analysis sweep frequencies
as x and y of result

none fv

smplcvt interpolate signal1 over timebase of
signal2

signal1:v
signal2:vx

vx

sweepcvt interpolate frq1 over sweep frequen-
cies of frq2

frq1:v
frq2:vx

vx

maketime create timebase starting at t = 0 in
x and y of result

tmax:r
pts:i

vx

makesweep create sweep frequencies starting at
f = 0 in x and y of result

fmax:r
pts:i

vx

fft FFT (argument should have 2k

points)
timedata:fv cv

invfft inverse FFT (argument should have
2k − 1 points)

frqdata:cv fv

cconv real circular (FFT) convolution
with zero padding

signal1:fv
signal2:fv

fv

upcconv unpadded real circular (FFT) con-
volution

signal1:fv
signal2:fv

fv

sconv slow (time-domain) real convolu-
tion

signal1:fv
signal2:fv

fv

fconv fast (approximate) real convolution signal1:fv
signal2:fv

fv

lpbwfrq lowpass Butterworth filter fre-
quency response

frqvec:vx
corner:f
order:i

cvx
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Graphical User Interface

6.1 Introduction

fREEDA supports three interactive front ends:

• iFREEDA — the preferred interface and part of the fREEDA distribution.

• Electric Editor — Very good for VLSI layout, not documented.

• fREEDA GUI — not currently distributed but described in this chapter.

The simulation engine in fREEDATM can be used in the traditional way as a stand-alone
program, for example in batch jobs. In this mode, the program reads an input netlist, process
its contents and writes the requested output files.

fREEDA also provides a Graphical User Interface (GUI), which is more convenient for
interactive use of the program. This GUI is written using the Java language, so it can be
used in every system where Java is supported. In this chapter we describe the different
components of the GUI. This has now been replaced by iFREEDA but this documentation
is provided for completeness and the code is available.

6.2 The Netlist Editor

The netlist editor is a simple text editor combined with a simulation manager. The editor
window is shown in Figure 6.1. Besides the normal editing commands, the editor provides
buttons and keyboard shortcuts to analyze the netlist being edited and see the output of the
simulation.

71



72 CHAPTER 6. GRAPHICAL USER INTERFACE

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 6.1: Netlist Editor window.
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Figure 6.2: Analysis window.
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Figure 6.3: Output Viewer window.

The editor can edit several files and handle multiple simulations at once by spawning
multiple windows.

6.3 The Analysis Window

The analysis window is used to show the progress of a simulation (Figure 6.2). The upper
subwindow displays important messages such as when the program starts or stops, and also
warnings and errors that may occur during the simulation. The lower subwindow shows the
progress of the simulation.

The buttons are self-explaining. The “Analyze” button changes to “Stop” when the
engine is running.

6.4 The Output Viewer Window

This window is perhaps the most useful of all. It is shown in Figure 6.3. The output file is
displayed at the left. This file contains detailed information about the simulation.

At the right there is a list of files available for plotting. After selecting one or more of
these files and depressing the “Plot” button, a plot window appears showing the desired
data (see Figure 6.4). Any number of plots can be requested. Also, the plot data is kept in
memory by the plot window, so it is possible to re-run a simulation with different parameters
and compare the new and old graphs on the screen. An encapsulated postscript file can be
generated pressing the corresponding button.

There are several features provided in the plot window. One of the most remarkable is
that it is possible to zoom in or out the graph by dragging the left or right mouse button,
respectively.

The plotting facility is provided by the ptplot [45] library.
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Figure 6.4: Plot window.
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[26] M. Valtonen, P. Heikkilä, A. Kankkunen, K. Mannersalo, R. Niutanen, P. Stenius, T.
Veijola and J. Virtanen, “APLAC - A new approach to circuit simulation by object
orientation,” 10th European Conference on Circuit Theory and Design Dig., 1991.

[27] K. Mayaram and D. O. Pederson, “CODECS: an object-oriented mixed-level circuit
and device simulator,” 1987 IEEE Int. Symp. on Circuits and Systems Digest, 1987, pp
604-607.

[28] A. Davis, “An object-oriented approach to circuit simulation,” 1996 IEEE Midwest
Symp. on Circuits and Systems Dig., 1996, pp 313-316.



BIBLIOGRAPHY 77

[29] B. Melville, P. Feldmann and S. Moinian, “A C++ environment for analog circuit simu-
lation,” 1992 IEEE Int. Conf. on Computer Design: VLSI in Computers and Processors.

[30] P. Carvalho, E. Ngoya, J. Rousset and J. Obregon, “Object-oriented design of microwave
circuit simulators,” 1993 IEEE MTT-S Int. Microwave Symp. Digest, June 1993, pp
1491-1494.

[31] C. E. Christoffersen and M. B. Steer “Implementation of the local reference concept for
spatially distributed circuits,” Int. J. of RF and Microwave Computer-Aided Eng., vol.
9, No. 5, 1999.

[32] A. I. Khalil and M. B. Steer “Circuit theory for spatially distributed microwave circuits,”
IEEE Trans. on Microwave Theory and Techn., vol. 46, Oct. 1998, pp 1500-1503.

[33] C. E. Christoffersen, M. Ozkar, M. B. Steer, M. G. Case and M. Rodwell, “State variable-
based transient analysis using convolution,” IEEE Transactions on Microwave Theory
and Techniques, Vol. 47, June 1999, pp. 882-889.

[34] C. E. Christoffersen, M. B. Steer and M. A. Summers, “Harmonic balance analysis for
systems with circuit-field interactions,” 1998 IEEE Int. Microwave Symp. Dig., June
1998, pp. 1131-1134.

[35] B. Speelpenning. “Compiling Fast Partial Derivatives of Functions Given by Algo-
rithms,” Ph.D. thesis (Under the supervision of W. Gear), Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana-Champaign, Ill., January
1980.

[36] T. F. Coleman y G. F. Jonsson, “The Efficient Computation of Structured Gradients us-
ing Automatic Differentiation,” Cornell Theory Center Technical Report CTC97TR272,
April 28, 1997

[37] H. S. Tsai, M. J. W. Rodwell and R. A. York, “Planar amplifier array with improved
bandwidth using folded-slots,” IEEE Microwave and Guided Wave Letters, vol. 4, April
1994, pp. 112-114.

[38] M. B. Steer, M. N. Abdullah, C. Christoffersen, M. Summers, S. Nakazawa, A. Khalil,
and J. Harvey, “Integrated electro-magnetic and circuit modeling of large microwave
and millimeter-wave structures,” Proc. 1998 IEEE Antennas and Propagation Symp.,
pp. 478–481, June 1998.

[39] M. N. Abdulla, U.A. Mughal, and M B. Steer, “Network Charactarization for a Finite
Array of Folded-Slot Antennas for Spatial Power Combining Application,” Proc. 1999
IEEE Antennas and Propagation Symp., July 1999.

[40] U. A. Mughal, “Hierarchical approach to global modeling of active antenna arrays,”
M.S. Thesis, North Carolina State University, 1999.

[41] Rational Software, UML Resources, http://www.rational.com/.



78 BIBLIOGRAPHY

[42] M. B. Steer, J. F. Harvey, J. W. Mink, M. N. Abdulla, C. E. Christoffersen, H. M. Gutier-
rez, P. L. Heron, C. W. Hicks, A. I. Khalil, U. A. Mughal, S. Nakazawa, T. W. Nuteson,
J. Patwardhan, S. G. Skaggs, M. A. Summers, S. Wang, and A. B. Yakovlev, “Global
modeling of spatially distributed microwave and millimeter-wave systems,” IEEE Trans.
Microwave Theory Techniques, June 1999, pp. 830-839.

[43] C. E. Christoffersen, S. Nakazawa, M. A. Summers, and M. B. Steer, “Transient analysis
of a spatial power combining amplifier”, 1999 IEEE MTT-S Int. Microwave Symp. Dig.,
June 1999, pp. 791-794.

[44] M. A. Summers, C. E. Christoffersen, A. I. Khalil, S. Nakazawa, T. W. Nuteson, M. B.
Steer and J. W. Mink, “An integrated electromagnetic and nonlinear circuit simulation
environment for spatial power combining systems,” 1998 IEEE MTT-S Int. Microwave
Symp. Dig., June 1998, pp. 1473-1476.

[45] Ptplot. http://ptolemy.eecs.berkeley.edu/java/ptplot

[46] V. Rizzoli, F. Mastri, F. Sgallari, G. Spaletta, Harmonic-Balance Simulation of Strongly
Nonlinear very Large-Size Microwave Circuits by Inexact Newton Methods, IEEE MTT-
S Digest, 1996.

[47] V. Rizzoli, A. Costanzo, and A. Lipparini, An Electrothermal Functional Model of the
Microwave FET Suitable for Nonlinear Simulation International Journal of Microwave
and Millimeter-Wave Computer-Aided Engineering, Vol. 5, No. 2, 104-121 (1995).

[48] V. Rizzoli, A. Lipparini, A. Costanzo, F. Mastri, C. Ceccetti, A. Neri and D. Masotti,
State-of-the-Art Harmonic-Balance Simulation of Forced Nonlinear Microwave Circuits
by the Piecewise Technique, IEEE Trans. on Microwave Theory and Techniques, Vol.
40, No. 1, Jan 1992.

[49] M. M. Gourary, S. G. Rusakov, S. L. Ulyanov, M. M. Zharov, K. K. Gullapalli, and
B. J. Mulvaney, Iterative Solution of Linear Systems in Harmonic Balance Analysis,
IEEE MTT-S Digest, 1997.

[50] I. Moret, On the Convergence of Inexact Quasi-Newton Methods, International J. of
Computer Math., Vol. 28, pp. 117-137, 1987.

[51] M. S. Nakhla, J. Vlach, A Piecewise Harmonic Balance Technique for Determination
of Periodic Response of Nonlinear Systems, IEEE Trans. on Circuits and Systems, Vol
CAS-23, No. 2, Feb 1976.

[52] A. Materka and T. Kacprzak, Computer Calculation of Large-Signal GaAs FET Ampli-
fier Characteristics, IEEE Trans. on Microwave Theory and Techniques, Vol MTT-33,
No. 2, Feb 1985.

[53] M. B. Steer, Transient and Steady-State Analysis of Nonlinear RF and Microwave
Circuits, ECE603 class notes, August 15, 1996.



BIBLIOGRAPHY 79

[54] J. F. Sevic, M. B. Steer, and A. M. Pavio, Nonlinear Analysis Methods for the Simulation
of Digital Wireless Communication Systems, International Journal of Microwave and
Millimiter-Wave Computer-Aided Engineering, Vol. 6, No. 3, 197-216, 1996.

[55] J. Kunisch and I. Wolff, Steady-State Analysis of Nonlinear Forced and Autonomous Mi-
crowave Circuits Using the Compression Approach, International Journal of Microwave
and Millimeter-Wave Computer-Aided Engineering, Vol. 5, No. 4, 241-255 (1995).

[56] E. Ngoya, A. S. R. Sommet and R. Quéré, Steady State Analysis of Free or Forced
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