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Physical resistor model – n subtype                    ResistorPhyN 
 

 
Description: 
This element implements a semiconductor resistor based on the n subtype of the Cadence 
physical resistor model. 
Form: resistorPhyN:<instance name> n0 n1 n2 <parameter list> 

instance name  is the model name 
n0 is the positive element terminal (Terminal0), 
n1 is the negative element terminal (Terminal1), 
n2 is the substrate terminal (Terminal2). 

Parameters: 
 

Parameter Type Default value Required? 
r:  Resistance (ohms) DOUBLE 1E+9 no 
coeff0:  Constant term of conductance 
polynomial 

DOUBLE 1 no 

coeff1:  First order coefficient of 
conductance polynomial 

DOUBLE 0 no 

coeff2: Second order coefficient of 
conductance polynomial 

DOUBLE 0 no 

coeff3: Third order coefficient of 
conductance polynomial 

DOUBLE 0 no 

coeff4: Fourth order coefficient of 
conductance polynomial 

DOUBLE 0 no 

coeff5: Fifth order coefficient of 
conductance polynomial 

DOUBLE 0 no 

polyarg:  Polynomial model argument type BOOLEAN 1 (TRUE) no 
tc1:  Linear temperature coefficient of 
resistor (1/C) 

DOUBLE 0 no 

tc2:  Quadratic temperature coefficient of 
resistor (1/C^2) 

DOUBLE 0 no 

tnom:  Parameter measurement 
temperature (K) 

DOUBLE 300 no 

Terminal0 Terminal1 

Terminal2 
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tdev:  Device operating temperature (K) DOUBLE 300 no 
is:  Saturation current (A) DOUBLE 1E-14 no 
n:  Emission coefficient DOUBLE 1 no 
ibv:  Current magnitude at the reverse 
breakdown voltage (A) 

DOUBLE 1E-10 no 

bv:  Junction reverse breakdown voltage 
(V) 

DOUBLE 0 no 

fc:  Coefficient for forward-bias depletion 
capacitance 

DOUBLE 0.5 no 

cj0:  Zero-bias junction capacitance (F) DOUBLE 0 no 
vj:  Junction built-in potential (V) DOUBLE 1.0 no 
m:  Junction grading coefficient DOUBLE 0.5 no 
tt:  Transit time (s) DOUBLE 0 no 
area:  Diode area multiplier DOUBLE 1 no 
rs:  Diode series resistance (ohms) DOUBLE 0 no 

 
Example: 
resistorPhyN:r2 2 3 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002 
coeff4=0.0 
+ coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tnom=300.0 tdev=300.0 is=1E-14 n=1.0 
+ ibv=1.0E-10 bv=0.0 fc=0.5 cj0=1.0E-10 vj=1.0 m=0.5 tt=0.0 area=1.0 rs=0.0 
 
Model Documentation:   
 
For polyarg=true:  
 The controlling voltage for the resistance is: 
  V = ( ( V(t0) – V(t2) ) + ( V(t1)-V(t2) ) ) / 2 
 and the resistance is: 
 R(V) = r / (coeff0 + coeff1*V + coeff2*V2+coeff3*V3+coeff4*V4+coeff5*V5) 
 
For polyarg=false: 
 The controlling voltage for the resistance is: 
  V = V(t0) - V(t1) 
 and the resistance is: 
 R(V) = r / (coeff0 + 1/2*coeff1*V + 1/3*coeff2*V2 + 1/4*coeff3*V3 +  
  1/5*coeff4*V4 + 1/6*coeff5*V5) 

 
Note that the code does not prevent a negative resistance value; care should be taken in 
selecting coefficients to ensure that the resulting resistance is positive for all anticipated 
values of the controlling voltage.  
 
Resistance as a function of temperature is: 
 R(tdev) = R(tnom) * ( 1 + tc1*(tdev-tnom) + tc2*(tdev-tnom)2 ) 
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References: 
This model is based on a description of the Cadence Spectre physical resistor model 
found at http://www.uta.edu/ronc/cadence/ResistorModels.pdf.  Code for diodes was 
taken from SPDiode model written by Carlos E. Christoffersen. 
 
 
Sample Netlist: 
 
**** resistorPhyN transient characteristic **** 
 
* This choice of conductance coefficients should result in positive resistor 
* values for Vctrl down to about -5V for polyarg = true or false. 
 
.tran2 tstop=4E-6 tstep=2E-8 
 
res:r1 1 2 r = 1000.0 
resistorPhyN:r2 2 3 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002 
coeff4=0.0 
+ coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tnom=300.0 tdev=300.0 is=1E-14 n=1.0 
+ ibv=1.0E-10 bv=0.0 fc=0.5 cj0=1.0E-10 vj=1.0 m=0.5 tt=0.0 area=1.0 rs=0.0 
res:r3 3 0 r = 1000.0 
vpulse:vbias 1 0  v1=0 v2=-3.0 td=0 tr=0 tf=0 pw=1E-6 per=2E-6 
 
.out write term 1 vt in "n_tran_vt1.out" 
.out write term 2 vt in "n_tran_vt2.out" 
.out write term 3 vt in "n_tran_vt3.out" 
 
.end 
 
Known Bugs: 
None 
 
Credits: 
Name          Affiliation        Date  Links 
ECE718 Student          NC State University   May 2003   www.ncsu.edu 
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Description of Model 
 
The goal here was to write a semiconductor resistor model based on a description of the Cadence Spectre 
physical resistor model. The Cadence physical resistor model consists of three subtypes: n, p, and poly.  
Each was implemented in fREEDA as a separarate model:  resistorPhyN, resistorPhyP, and 
resistorPhyPoly.  The poly subtype consists of a voltage-dependent resistor and a fixed capacitor between 
each of the resistor terminals and the substrate.  The n and p subtypes consist of a voltage-dependent 
resistor and a diode between each of the resistor terminals and the substrate.  For the n subtype, the diodes’ 
anodes are connected to the resistor, while in the p subtype, the diodes’ anodes are connected to the 
substrate.  These diodes include junction capacitance. 
 
 
There are three subtypes for this model, n, p, and poly.  Each is contained in a separate file.  Subtype n is 
called resistorPhyN, subtype p is called resistorPhyP, and subtype poly is called resistorPhyPoly.  For all 
three subtypes, the voltage-dependent resistance is determined by coefficients of a fifth-order conductance 
polynomial and a nominal resistor value, which are model parameters.  For the poly subtype, the fixed 
capacitor value is a model parameter.  For the n and p subtypes, a fixed capacitance is not included, but 
junction capacitance is included in the diodes.  Some items which are included in the Cadence model, 
including noise and device size parameters, were left out of the fREEDA models. 
 
Summary of Operation 
 
For the poly subtype, parameterization is not necessary, and the state variables are terminal voltages and 
their derivatives.  Resistance is determined from the terminal voltages, then terminal currents are 
calculated.  The use of diodes in the n and p subtypes forces re-parameterization as in the SPDiode model.  
In the n and p subtypes, diode voltages and currents are calculated first from the state variables.  The 
terminal voltages are then set to the diode voltage plus drop across the diode series resistance (or the 
negative, for subtype p).  From the terminal voltages, resistance is calculated, then terminal currents are 
calculated.  
 
 
Calculation of Resistor Value 
 
The controlling voltage for the resistor value is selected with the polyarg parameter.  In addition to 
determining the controlling voltage, polyarg also determines how the resistance is calculated from the 
controlling voltage. 
 
 When polyarg is set to false (or “diff” in the documentation on which this model is based), the controlling 
voltage for the resistance is the voltage across the resistor: 
 V = V(t0) – V(t1). 
and the current through the resistor is 
 I(V) = (V / r ) * (coeff0 + 1/2*coeff1*V + 1/3*coeff2*V2+...) 
 
Though the document on which this model is based does not describe how the expression for current was 
derived, it seems that for polyarg=false, R is defined as: 
 R = dV / dI 
so 
 I = integral ( dV / R(V) ) 
 I = integral ( (coeff0 + coeff1*V + coeff2*V2 + ... )*dV / r ) 
 I = (coeff0*V + 1/2*coeff1*V2 + 1/3*coeff2*V3 + ...) / r 
 I = (V / R(inst)) * (coeff0 + 1 /2*coeff1*V + 1/3*coeff2*V2 + ...). 
 
When polyarg is set to true (or “sum” in the documentation on which this model is based), the controlling 
voltage for the resistance is the average voltage between the resistor terminals and the substrate. 
 V = ( ( V(t0) – V(t2) ) + ( V(t1)-V(t2) ) ) / 2. 
When polyarg is set to true, current through the resistor is 
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 I(V) = (V / R(inst) ) * (coeff0 + coeff1*V + coeff2*V2+...) 
Given the result above, it seems that for polyarg=true, R is defined as: 
 R = V / I 
 
It should be noted that there is no provision in the code to prevent a negative resistor value (depending on 
the conductance polynomial coefficients, this can occur for some negative values of the controlling 
voltage).  Coefficients must be selected carefully to avoid negative resistor values for any anticipated value 
of the controlling voltage. 
 
 
Diodes 
 
The code for the diodes was taken from the SPDiode model.  The non-charge-conserving portion of the 
code was used. For the poly subtype, parameterization is not necessary, and the state variables are terminal 
voltages and their derivatives.  Resistance is determined from the terminal voltages, then terminal currents 
are calculated.  The use of diodes in the n and p subtypes forces re-parameterization as in the SPDiode 
model.  In the n and p subtypes, diode voltages and currents are calculated first from the state variables.  
The terminal voltages are then set to the diode voltage plus drop across the diode series resistance (or the 
negative, for subtype p).  From the terminal voltages, resistance is calculated, then terminal currents are 
calculated.   
 
 
Temperature effects 
 
The phyres model was not implemented as a thermal model.  However, a fixed device operating 
temperature can be specified in the parameter list.  The parameter tdev is the device operating temperature, 
and tnom is the temperature at which device parameters are assumed to have been measured. 
 
Resistance as a function of temperature is: 
 R(tdev) = R(tnom) * ( 1 + tc1*(tdev-tnom) + tc2*(tdev-tnom)2 ) 
 
For linear capacitance in the poly subtype, capacitance as a function of temperature is: 
 C(tdev) = C(tnom) * ( 1 + tc1c*(tdev-tnom) + tc2c*(tdev-tnom)2 ) 
 
For junction capacitance in the n and p subtypes, temperature coefficients are not used.  Instead, any 
changes in capacitance that occur over temperature are due to tdev being used in diode calculations. 


